Эпра для люминесцентных светильников: что это?

Схема подключения люминесцентных ламп

  1. Схема подключения люминесцентных ламп
  2. Видео подключения люминесцентных ламп

Наиболее распространённым источником освещения, применяемым в офисных, производственных и общественных зданиях, являются люминесцентные светильники. В последнее время, в связи с экономией энергоресурсов, их, также, начали часто применять и в домашнем быту.

Стандартные светильники, кроме своих достоинств, таких как малое энергопотребление, простота монтажа, низкая стоимость, имеют и ряд конструктивных недостатков. Часть из них выплывает из достоинств: применяя дешёвые, устаревшие, схемы и материалы, производитель уменьшает стоимость светильника, при этом заранее ухудшает потребительские качества.

Подключение одной или двух люминесцентных ламп заводского производства, можно изучить, разобрав обычный светильник. Обычная стандартная, широко применяющаяся схема подключения люминесцентных ламп, включает в себя стартер, дроссель, соединительные провода, конденсатор, и сами лампы. В данном случае, используется так называемая электромагнитная управляющая система.

Улучшить самостоятельно степень освещённости, убрать надоедливое гудение и моргание вполне реально. Для этого, необходимо заменить устаревшую систему управления на современную электронную — (ЭПРА).

Для начала, нужно демонтировать светильник, вынуть из него всю начинку. Приобретя новый электронный блок, исходя из параметров вашего светильника, можно будет выполнить подключение люминесцентных ламп без дросселя и стартера. Для такой работы, вам понадобятся отвёртки с разными жалами, кусачки для зачистки проводов, шуруповёрт для крепления блоков управления, изолента, отвёртка-тестер.

Подключение ЭПРА для люминесцентных ламп легко выполнить, имея минимальные познания в электрических схемах, и навыки работы с электропроводкой. Фактически, в светильнике останется сам блок, комплект проводов и лампы дневного света.

Перед началом работ, нужно выбрать в корпусе светильника достаточное место для установки электронного блока управления, руководствуясь удобством подключения к клеммам, находящимся на его корпусе. Крепим блок к корпусу при помощи саморезов обычным шуруповёртом. Соединяем аппаратуру управления с лампой и клеммой подключения.

Схема подключения 2-х люминесцентных ламп аналогична, просто они подключаются последовательно, и, исходя из этого, мощность электронного блока должна быть в два раза больше мощности ламп. Тот же принцип, при подключении трёх и более ламп, в одном корпусе.

Совет

После сборки всей конструкции, нужно убедиться в правильности подключения всех проводников, после чего можно устанавливать светильник на место. Проверив тестером отсутствие напряжения в сети, подключаем светильник к электропроводке, соединяя провода через специальный клеммник.

Последний аккорд, это включение напряжения для удостоверения правильности работы светильника.

Если схема, к примеру, подключения двух люминесцентных ламп, была выполнена правильно, то сам процесс работы будет разительно отличатся от первоначального.

Во-первых, лампы зажгутся моментально, без так называемого разогрева, во-вторых исчезнет низкочастотное гудение, свет перестанет пульсировать, заметно для человеческого глаза, а общая светимость увеличится.

Настоятельно рекомендуем вызвать электриков-профессионалов, если вы не уверены в своих силах! Ведь работа с электрикой опасна для здоровья и жизни!

Как происходит запуск и работа ламп

Люминесцентная лампа, в отличие от обычной, включается в сеть не напрямую. Это связано с ее устройством и принципом работы.


Схема включения люминесцентной лампы, исходное положение.

Для ее зажигания надо:

  • обеспечить эмиссию электронов из катодов, выполненных в виде нитей накаливания;
  • ионизировать межэлектродный промежуток, заполненный парами ртути, с помощью высоковольтного импульса.

Дальше работа лампы будет продолжаться до снятия питания за счет дугового разряда между электродами. В исходном положении выключатель питания разомкнут, контакты стартера также разомкнуты.


Работа газоразрядной лампы, стадия 1.

В первый момент, после подачи напряжения на схему небольшой ток (в пределах 50 мА) течет по цепи дроссель – нить 1 лампы – тлеющий разряд в колбе стартера – нить 2 лампы. За счет этого слабого тока нагреваются и замыкаются контакты стартера, и ток течет через нити накаливания, нагревая их и создавая эмиссию электронов.


Работа газоразрядной лампы, стадия 2 (красным выделен путь тока).

Этот ток ограничивается сопротивлением дросселя. Без такого ограничения нити накаливания сгорят от сверхтока.


Работа газоразрядной лампы, стадия 3.

После остывания контактов стартера они размыкаются. За счет разрыва цепи с большой индуктивностью формируется импульс напряжения (до 1000 вольт), который ионизирует разрядный промежуток между двумя нитями лампы. Через ионизированный газ начинает течь ток, который вызывает свечение паров ртути. Это свечение инициирует зажигание люминофора. Этот ток также ограничивается комплексным сопротивлением стартера. А стартер на дальнейшую работу светильника влияния не оказывает.

Очевидно, что стартер играет в процессе работы светильника важную роль:

  • ограничивает ток при разогреве нитей лампы;
  • формирует зажигающий импульс высокого напряжения;
  • ограничивает ток газового разряда.

Для выполнения этих функций балласт должен обладать достаточной индуктивностью, чтобы создать положенное реактивное сопротивление переменному току и чтобы сформировать высоковольтный импульс за счет явления самоиндукции.

Дроссель помогает избавиться от этого эффекта. Он превращает переменное низкочастотное напряжение бытовой сети в постоянное, а затем инвертирует его обратно в переменное, но уже на высокой частоте и пульсации исчезают.

Включение ламп дневного света

Хотя люминесцентную лампу нельзя просто воткнуть в розетку, запустить ее совсем несложно и под силу каждому, кто знаком с электрикой. Для этого достаточно обзавестись соответствующим пускорегулирующим устройством того или иного типа и собрать несложную схему.

Использование электромагнитного дросселя и стартера

Это, пожалуй, самый простой и бюджетный вариант. Для создания люминесцентного светильника понадобится лампа дневного света, электромагнитный балласт (дроссель), мощность которого соответствует мощности лампы, и стартер с рабочим напряжением 220 В (указано на корпусе). Схема подключения дросселя для люминесцентных ламп будет выглядеть так:

Схема подключения люминесцентной лампы с дросселем.

Работает схема следующим образом. При подключении светильника к сети лампа не горит – напряжения на ее электродах недостаточно для зажигания. Но одновременно это же напряжение поступает через спирали лампы на стартер, представляющий собой газоразрядную лампу со встроенной биметаллической пластиной.

Нагревшаяся пластина замыкает стартер накоротко, и возросший ток разогревает спирали лампы дневного света. Через некоторое время биметаллическая пластина остывает и разрывает цепь подогрева. За счет обратной самоиндукции дросселя на уже разогретых катодах ЛДС происходит бросок напряжения, поджигающий лампу. Благодаря возникшему тлеющему разряду напряжения на стартере уже не хватает для его срабатывания, и в дальнейшей работе он не участвует. Дроссель же ограничивает ток через колбу ЛДС, обеспечивая ей номинальный рабочий ток.

При необходимости один дроссель может питать и две лампочки, но здесь необходимо выполнить три условия:

  1. Мощность лампочек должна быть одинаковой.
  2. Мощность дросселя должна равняться суммарной мощности лампочек.
  3. Напряжение срабатывания стартеров (оно указано на корпусе устройства) должно быть 127 В.

Схема люминесцентного светильника с двумя лампами

Обратите внимание: соединение ламп должно быть последовательным и ни в коем случае не параллельным

Работа люминесцентного светильника с ЭПРА

Если вы будете использовать в своем светильнике электронный балласт, то стартер не понадобится (он входит в ЭмПРА, хотя и выполнен отдельным узлом). Дело в том, что для пуска осветителя электронный балласт использует не подогрев спирали, а высокое напряжение (до киловольта), обеспечивающее разряд между электродами. Единственное условие, которое нужно соблюдать – мощность балласта должна равняться номинальной мощности осветителя. Схема же такого светильника будет совсем простая:

Включение электронного балласта для люминесцентных ламп (схема 36w)

Поскольку обычные ЭПРА не могут работать в двухламповых светильниках, выпускаются двухканальные приборы. По сути, это два обычных ЭПР в одном корпусе.

Схема светильника 2×36 с электронным балластом.

Приведенная схема не является единственной и зависит как от типа пускорегулирующего устройства, так и от производителя. Обычно она наносится прямо на корпус прибора:

Схема подключения и мощность осветителей(2х36) нередко наносится на корпус балласта.

Принцип действия

Электронный балласт для люминесцентных ламп схема 36w получает питание при 50 — 60 Гц. Сначала он преобразует напряжение переменного тока в постоянный. После этого фильтрация этого постоянного напряжения осуществляется с помощью конфигурации конденсатора. Теперь отфильтрованное напряжение подается на каскад высокочастотных колебаний, они обычно представляют собой прямоугольные волны, а диапазон частот составляет от 20 кГц до 80 кГц.

Следовательно, выходной ток имеет очень высокую частоту. Небольшая индуктивность обеспечена, чтобы быть связанной с высокой скоростью изменения тока на большой частоте. Как правило, более 400 В требуется для запуска процесса газового разряда в свете люминесцентных светильников. Когда переключатель включен, начальное напряжение на лампе становится равным 1000 В из-за высокого значения, следовательно, разряд газа происходит мгновенно.

Как только процесс разрядки начат, напряжение на светильнике падает с 230 В до 125 В, балласт для ламп позволяет ограниченному току течь через нее. Это управление напряжением и током осуществляется блоком управления ЭБ. В рабочем состоянии люминесцентного светильника ЭБ действует, как диммер для ограничения тока и напряжения.

Простейший ЭБ использует общий принцип выпрямления входной мощности и сглаживания формы волны, пропуская его через простой фильтр, такой как электролитический конденсатор. Схемы электронных балластов для люминесцентных ламп демонстрируют принцип их работы.

Выпрямитель преобразует переменный ток в постоянный сигнал. Первым шагом является выпрямление входной мощности, а затем сигнал прерывается для увеличения частоты. Этот тип балластов работает от 20 до 60 кГц. Другие типы, такие как магнитные балласты, обычно работают на частоте линии, которая составляет около 50-60 Гц. Они страдают от таких проблем, как мерцание и жужжащий звук, который иногда создает неудобства для окружающих.

Обоснование увеличения частоты в ЭБ заключается в том, что эффективность лампы быстро возрастает при изменении частоты от 1 кГц до 20 кГц, а затем постепенно повышается до 60 кГц. По мере того как рабочая частота устройства увеличивается, величина тока, необходимого для создания такого же количества света, уменьшается по сравнению с линейной частотой. Таким образом, повышая эффективность лампы.

Важно! Повышенная производительность на более высоких частотах заключается в том, что период времени цикла переменного тока становится короче, чем время релаксации между последовательной ионизацией и деионизацией газа переменным током. Таким образом, плотность ионизации в лампе поддерживается практически постоянной вблизи оптимальных условий работы в течение всего периода переменного тока. Следовательно, он действует как омический резистор, который увеличивает коэффициент мощности

В то время как на низких частотах плотность ионизации колеблется больше относительно оптимального уровня, вызывая плохие средние условия разряда

Следовательно, он действует как омический резистор, который увеличивает коэффициент мощности. В то время как на низких частотах плотность ионизации колеблется больше относительно оптимального уровня, вызывая плохие средние условия разряда.

Схемы электронных балластов для люминесцентных ламп

Оборудование имеет небольшое количество элементов. Какие они выполняют функции, а также что представляют собой, мы поговорим ниже.


Схемы включения люминесцентных ламп с электромагнитными ПРА.

Переменное напряжение принимает на себя диодный мост. Здесь оно выпрямляется и происходит его сглаживание с помощью фильтрующего конденсатора. Как правило, к мосту крепятся предохранитель и фильтрующее устройство для устранения электромагнитных помех. В некоторых ЭПРА зарубежного производства фильтры отсутствуют, а ёмкость сглаживающего элемента меньше, чем требуется, что становится причиной появления проблем в работе осветительного оборудования.

Затем напряжение попадает на автоматический генератор. Даже по самому названию можно понять, для какой цели он здесь установлен. В данном случае происходит этот процесс на одном или нескольких транзисторах, их количество зависит от мощности. К трансформатору, который имеет три намотки, подключаются транзисторы. Они бывают нескольких типов, выбор зависит от того, какая мощность у осветительного оборудования.

Несмотря на то, что имеет название транзистор, его вид необычный. На это устройство, которое является ферритовым кольцом, наматываются три обмотки, каждая из нескольких витков. Две имеют роль управляющих, а одна рабочая. Функции по созданию импульсов чтобы включать и выключать лампу выполняют управляющие.

Поскольку они наматываются в противофазе, значит, импульсы управления являются противоположными по отношению один к другому. Поэтому они должны открываться по очереди. Соединять рабочую обмотку необходимо с двух сторон – с дросселем и конденсатором, а также транзисторами. Так осуществляется питание лампы.

Чтобы запустить генератор, предусмотрен динистор. С его помощью схема включается после достижения в нем определенного напряжения. Как правило, это напряжение примерно 30 В.


Устройство светодиодной лампы со встроенным драйвером.

Принцип работы люминесцентного светильника

Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.

Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).

Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.

Для чего нужен дроссель

Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:

  • формирование напряжения запуска;
  • ограничение тока через электроды.

Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.

Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.

В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.

Отличия дросселя от ЭПРА

Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.

В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:

  • длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
  • большие искажения формы напряжения питающей сети (cosф
  • мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
  • большие массо-габаритные характеристики;
  • низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
  • низкая надежность запуска при отрицательных температурах.

Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.

Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.

Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:

  • с предварительным подогревом электродов;
  • с холодным запуском.

В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.

Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).

Схемы с электронным дросселем имеют такие преимущества:

полное отсутствие мерцания; широкий температурный диапазон использования; малые искажения формы напряжения сети; отсутствие акустических шумов; увеличение срока службы источников освещения; малые габариты и вес, возможность миниатюрного исполнения; возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов

Резюме

Краткий анализ показывает, что большинство достоинств ЭПРА на улице либо перестает быть достоинством, либо не имеет значения, а недостатки носят принципиальный характер. Поэтому светильники с ЭПРА непопулярны в Америке, в Европе, непопулярны у нас. Их доля в общем количестве уличных светильников — менее 1%, и это не просто так.

При этом во внутреннем освещении ситуация кардинально противоположная, применение ЭПРА оправдано и целесообразно, экономически эффективно.

В уличном освещении рекомендуется использовать либо светильники с традиционными ЭМПРА, либо, для задач управления освещением, ЭМПРА с переключением обмоток.

Необходимость пускорегулирующего аппарата


Говоря более профессиональным языком, представленная ситуация объясняется выходом из строя ЭМПРА — электромагнитной пускорегулирующей аппаратуры. Известно, что лампы дневного света представляют из себя стеклянные трубки, наполненные парами ртути, которые и обеспечивают свечение.

Сами они работать от сети 220 В не могут. Требуется специальный переходник. Таким переходником, стабилизирующим напряжение и сглаживающим пульсирование тока, является ЭМПРА. Этот встроенный пускорегулирующий аппарат старого поколения состоит из стартера — пускателя, конденсатора — обеспечивающего стабилизацию тока и дросселя, сглаживающего пульсацию напряжения.

Подключение через электромагнитный балласт со стартером

Самым простым, дешевым, а потому и наиболее распространенным является электромагнитный балласт. В нем применен самый обычный дроссель, рассчитанный на переменный ток с частотой 50 Гц. Одним из важных недостатков такого дросселя является смещение фазы тока относительно фазы напряжения, при котором эффективность любого электрического устройства снижается.

Схема подключения ЭПРА

В характеристиках обычно указывают не угол, на который происходит смещение, а его косинус — cosφ. Чтобы уменьшить угол расхождения и тем самым увеличить cosφ, приблизив его к единице, в пусковое устройство вводится компенсирующий конденсатор. Подключаться он может по-разному, чаще всего — по схеме параллельной компенсации.

Неотъемлемой частью данной схемы является стартер — газоразрядная лампа в миниатюре, заполненная неоном. У стартера имеются две особенности:

  1. Объем неона в нем подобран таким образом, чтобы напряжение зажигания было выше напряжения горения основной лампы, но ниже сетевого напряжения.
  2. Один из контактов представляет собой биметаллическую пластину, которая по достижении определенной температуры изгибается (из-за разности коэффициентов линейного расширения входящих в ее состав металлов) и при этом прикасается ко второму контакту стартера.

Стартер подключен между электродами лампы последовательно с ними, как бы в обход разрядного промежутка, то есть параллельно ему.

Подключение люминесцентных ламп через ЭПРА

Вот как работает эта схема:

  1. При подаче напряжения на лампу газовый промежуток в стартере пробивается и возникает дуга, замыкающая цепь «дроссель — 1-й электрод — стартер — 2-й электрод». По этой цепи течет ток, величина которого ограничивается дросселем. Он заставляет греться электроды лампы, также от дугового разряда в стартере греются его электроды.
  2. Когда биметаллический контакт стартера достаточно разогревается, он сгибается и прикасается ко второму контакту, вследствие чего ток направляется мимо стартера и тот начинает остывать.
  3. Остыв, биметаллический контакт отсоединяется от второго контакта и из-за размыкания цепи на дросселе возникает значительный импульс напряжения. Если этот импульс возникнет в момент однонаправленной фазы сетевого напряжения, то суммарное напряжение на дросселе окажется достаточным для пробоя промежутка между электродами лампы и та включится. Вероятность такого совпадения относительно невелика, поэтому описанный цикл успевает обычно повториться несколько раз. При этом происходит характерное мигание лампы, что считается одним из недостатков светильников этого типа.

Во время повторяющихся попыток включения стартер становится источником радиочастотных помех, для подавления которых параллельно ему подключается конденсатор.

Общий принцип работы элемента

По сути, балласт для люминесцентных ламп представляет собой дроссель. Он регулирует силу подачи тока, ограничивая или разделяя разночастотные электрические сигналы. Ликвидирует пульсации постоянного тока. Происходит нагрев катодов люминесцентных ламп.

Далее, на них производится подача необходимого количества напряжения, которое активирует работу осветительного прибора. Напряжение корректируется с помощью особого регулятора, который впаян в инверторную схему. Именно он отлаживает диапазон напряжений. За счет вышеперечисленных особенностей работы балласта мерцание в источнике света полностью исключается.

В схему встроен и стартер. Его функции – трансляция напряжения и зажигание. При включении лампы, на микросхеме балласта происходит снижение силы тока. Данная особенность позволяет выстроить необходимый режим работы осветительного прибора.

Сегодня на рынке широко представлены такие виды балластных устройств, как:

  • электромагнитные;
  • электронные;
  • балласты для компактных ламп.

Представленные категории отмечены надёжной работой и обеспечивают длительное функционирование и простоту эксплуатации всех люминесцентных ламп. Все эти приборы имеют идентичный принцип действия, однако отличаются по некоторым пунктам.

Электромагнитные

Данные балласты применимы для ламп, подключенных к электросети при помощи стартера. Первично возникающий разряд интенсивно разогревает и замыкает биметаллические электродные элементы. Происходит резкое увеличение рабочего тока.

Электромагнитный балласт легко узнать по внешнему виду. Конструкция более массивная, по сравнению с электронным прототипом.

При выходе из строя стартера, в схеме электромагнитного балласта, возникает фальстарт. При поступлении питания лампа начинает мигать, впоследствии идёт ровная подача электроэнергии. Эта особенность значительно снижает рабочий ресурс источника освещения.

Плюсы Минусы
Высококлассный уровень надежности, доказанный практикой и временем. Долгий запуск — на первом этапе эксплуатации запуск осуществляется за 2-3 секунды и до 8 секунд к моменту завершения срока службы.
Простота конструкции. Повышенный расход электроэнергии.
Удобство эксплуатации модуля. Мерцание лампы с частотой 50 Гц (эффект стробирования). Негативно влияет на человека, который длительно находится в помещении с подобным видом освещения.
Доступная цена для потребителей. Слышен гул работы дросселя.
Количество фирм производителей. Значительный вес конструкции и громоздкость.

Электронные

Сегодня применяются магнитные и электронные балластники, которые состоят в первом случае из микросхемы, транзисторов, динисторов и диодов, а во втором – из металлических пластин и медного провода. Посредством стартера лампы запускаются, причем в качестве единой функции этого элемента с балластником в одной схеме организовано явление в электронном варианте детали.

  • малый вес и компактность;
  • плавное быстрое включение;
  • в отличие от электромагнитных конструкций, которым для работы требуется сеть 50 Гц, высокочастотные магнитные аналоги функционируют без шумов от вибрации и мерцания;
  • снижены потери на нагревание;
  • коэффициенты мощности в электронных схемах достигают 0,95;
  • продленный срок эксплуатации и безопасность применения обеспечиваются несколькими видами защиты.
Достоинства Недостатки
Автоматическая настройка балласта под различные виды ламп. Более высокая стоимость, по сравнению с электромагнитными моделями.
Моментальное включение осветительного прибора, без дополнительной нагрузки на устройство.
Экономия потребления электроэнергии до 30%.
Исключен нагрев электронного модуля.
Ровная световая подача и отсутствие шумовых эффектов в процессе освещения.
Увеличение срока службы люминесцентных ламп.
Дополнительная защита гарантирует увеличение степени пожаробезопасности.
Снижение рисков в процессе эксплуатации.
Ровная подача светопотока исключает быструю утомляемость.
Отсутствие негативных функций в условиях пониженных температур.
Компактность и легкость конструкции.

Для компактных люминесцентных ламп

Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.

Как правильно подключить

Подключение люминесцентных ламп проводится с помощью различных вариантов. С использованием дросселя, с балластом, со стартером или без него. Далее в статье приведено подробное описание каждого способа.

С дросселем и без него

Люминесцентную установку нельзя просто зажечь — ей необходимо наличие зажигателя и токоотвод. В небольших изделиях фабрики все эти нюансы учитывают и встраивают в корпус и покупателю нужно только лишь вкрутить лампочку в подходящий плафон светильника/торшера и нажать выключатель.

А для более крупных лампочек необходима пускорегулирующая установка, которая может быть как электромеханическая, так и электронная.

Для правильного подсоединения и бесперебойной работы лампочки нужно знать схему.

Здесь рассматривается поэтапное подключение двух трубчатых люминесцентных ламп к сети с применением стартерной установки. Для работы необходимо иметь два стартера, дроссель, вид которого должен непременно соответствовать виду лампы.

А также необходимо помнить о суммарной мощности пускового аппарата, она не должна быть выше, чем у дросселя.

При включении питающего кабеля к лампочке необходимо помнить, что в роли ограничителя тока будет дроссель.

Поэтому, фазную жилу нужно подключать через него, а на изделие подключить нулевой кабель.

Данная схема подключения подходит для крупных осветительных ламп. А более меньшие модели оснащены вмонтированным устройством запуска и регулировки — портативным ЭПРА, который расположен в корпусе.

Подключение без использования дросселя

Такой вариант подключения будет более тяжелым, и не подойдет для новичка.

Для работы можно использовать диодный мост с несколькими конденсаторами и подсоединенная последовательно в цепь в роли балласта, лампа накаливания.

Основной плюс этого подключения в том, что можно включить не только обычную лампу без дросселя, но и испорченную, в которой нет спиралей.

Для изделий мощностью 18 ватт необходимо брать следующие элементы:

  • диодный мост GBU405;
  • конденсатор 2NF (до 1 кв)
  • конденсатор 3NF (до 1 кв)
  • люминесцентная лампа 50 Вт

Для трубок большей мощности нужно увеличить объем конденсатора. После всего схема подключается к дневному освещению.

С электронным балластом

Провести работу по подключению с применением ЭПРА для люминесцентных изделий легко произвести, если человек имеет базовые навыки работы с электрикой. Фактически, в изделии будет находиться сам блок, элемент проводов и лампы дневного освещения.

Для начала необходимо выбрать в корпусе лампы удобное место для подключения электронного блока управления, полагаясь на практичную расстановку клемм, которые находятся на корпусе.

Зафиксировать его с корпусом с помощью саморезов простым шуруповёртом. Соединить блок управления с изделием и клеммой подключения.

Программа подключения двух люминесцентных изделий такая же, только они включаются последовательно, поэтому мощность блока управления должна быть больше. По такой же схеме можно подключить три и более лампочки.

После завершения работы, необходимо убедиться в верности подключения всех проводов, и только потом крепить светильник на место. Проверив вольтметром отсутствие напряжения в электросети, подсоединить светильник к электрической проводке.

В завершении нужно включить напряжение, чтобы проверить работы люминесцентной лампы. Если все было произведено правильно, то это будет заметно сразу.

Лампы сразу включатся, не нужно ждать пока они разогреются, а также они перестанут издавать шум, исчезнет мерцание, а яркость будет гораздо выше.

Если человек не уверен в своей способности, то лучше вызвать специалиста для этой работы.

Со стартером

Схему подключения люминесцентной лампы со стартером будет выполнить проще всего. Здесь для примера будет взята лампочка на 40 Вт. Дроссель должен быть с такой же мощностью, а для стартера будет достаточно 60 Вт.

Пошаговое подключение по схеме:

  • параллельно установить стартер к выступающим боковым контактам на краях люминесцентной лампочки. Эти контакты похожи на куски нитей накаливания вакуумной колбы;
  • теперь на контакты необходимо начать подсоединять дроссель;
  • к этим контактам подсоединить конденсатор, непоследовательно, а параллельно. Из-за этого конденсатору будет возмещаться реактивная мощность и уменьшаться помехи в электросети.

Такую простую схему может осуществить любой человек, но перед тем, как включаться лампочку, нужно замерить напряжение в сети. Включать светильник только после теста мультиметром.

Достоинства и недостатки

Благодаря прогрессу в технологических особенностях электронных балластов, эти аксессуары стали широко использоваться в люминесцентных лампах (ЛЛ).

Важные преимущества:

  • Гибкость конструкции и отличные характеристики управления. Существуют различные типы балластов с регулируемыми функциями, которые могут работать с ЛЛ на разных выходных уровнях. Есть балласты для слабой освещенности и снижения энергопотребления. Для более высокой освещенности имеются балласты с высокой светоотдачей, которые можно использовать с меньшим количеством ламп и более высоким коэффициентом мощности.
  • Большая эффективность. Электронные дроссели редко выделяют много внутреннего тепла, и поэтому они считаются более продуктивными. Эти ЭБ обеспечивают флуоресцентные лампы без мерцания и постоянной мощности, что является одним из наиболее заметных преимуществ.
  • Меньшая охлаждающая нагрузка. Поскольку ЭБ не включают в себя катушку и сердечник, выделяемое тепло сводится к минимуму и, следовательно, охлаждающая нагрузка уменьшается.
  • Способность одновременно эксплуатировать больше устройств. Один ЭБ может использоваться для управления 4 светильниками.
  • Легче по весу. Благодаря использованию электронных балластов светильники имеют меньший вес. Поскольку он не включает в себя сердечник и катушку, он сравнительно легкий по весу.
  • Меньшее мерцание лампочки. Одним из величайших преимуществ использования этих компонентов является уменьшение этого фактора.
  • Тихая работа. Еще одна полезная особенность — ЭБ работают тихо, в отличие от магнитных балластов.
  • Превосходные сенсорные возможности — ЭБ обладают сенсорными возможностями, так как они обнаруживают окончание срока службы лампы и выключают ее до того, как она перегреется и выйдет из строя.
  • Электронные дроссели доступны в огромном ассортименте во многих онлайн магазинах электроники по доступным ценам.

К недостаткам можно отнести тот факт, что у электронных балластов переменные токи могут генерировать пики тока вблизи максимумов напряжения, создавая высокий гармонический ток. Это проблема не только для системы освещения, но также может вызвать дополнительные проблемы, такие как паразитные магнитные поля, коррозия труб, помехи от радио и телевизионного оборудования и даже неисправность ИТ-оборудования.

Высокое содержание гармоник также вызывает перегрузку трансформаторов и нейтральных проводов в трехфазных системах. Более высокая частота мерцания может оставаться незамеченной человеческим глазом, тем не менее, она вызывает проблемы с инфракрасными пультами дистанционного управления, используемыми в домашних мультимедийных устройствах, например, таких как телевизоры.

Дополнительная информация! Электронные балласты не имеют схемы, чтобы выдержать скачки напряжения и перегрузки.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Коммуникации
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: