Дроссель для ламп дневного света

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Ремонт ЭПРА

Если модуль ЭПРА вышел из строя, то для его ремонта потребуются определенные знания электроники и умение пользоваться мультиметром. Если базовых знаний электроники нет, то лучше всего просто произвести замену блока целиком, либо отдать в мастерскую на ремонт. Чтобы рассмотреть подробности ремонта ЭПРА не хватит многотомника.

Поиск неисправности необходимо начинать с осмотра платы. Неисправные электронные элементы имеют характерную черному. Корпуса деталей могут почернеть, а на плате будет заметно темное пятно. Обязательно нужно просмотреть и токоведущие дорожки.

Как и любом ремонте, часто, перегоревший элемент – это не причина, а следствие.

Инструментальную диагностику начинаем с проверки предохранителя. Как правило на плате он обозначается латинской буквой F и цифрой – порядковым номером.

Прозвонка элементов ЭПРА с помощью мультиметра

При ремонте балласта для люминесцентных источников света обратите внимание на электролитические конденсаторы. Если конденсатор деформирован – вздулся, он подлежит замене

Здесь важно использовать конденсатор с напряжением не ниже того, который был установлен. Больше – можно, меньше – нет

Емкость не желательно менять. Обязательно соблюсти полярность. Неправильная полярность – основная причина взрыва конденсатора.

Далее стоит произвести прозвонку полупроводников. Диоды не должны быть в пробое – при любой полярности щупов мультиметра Вы не должны слышать писк. Тоже касается и униполярных транзисторов. Затвор, исток, сток не должны прозваниваться накоротко в любых позициях.

Большинство мастеров сервисных центров предпочитают не браться за ремонт схемы пускателя. Да и потребителю могут выставить счет на сумму большую, чем стоит новый аппарат. Мастера считают, что при выходе более одного компонента на плате, ремонт считается экономически нецелесообразным.

Изготовить своими руками

Трубчатые ЛЛ длиной 1200 мм недорого стоят и могут освещать большие площади. Светильник можно изготовить своими руками, например, из 2 ламп по 36 Вт.

  1. Корпус – основание прямоугольной формы из негорючего материала. Можно использовать бывший в употреблении светильник, для которого ремонт уже не требуется.
  2. ЭПРА подбирается под мощность светильников.
  3. На каждую из ламп понадобится по 2 патрона G13, многожильный провод и крепеж.
  4. Патроны для ламп крепятся на корпусе после выбора расстояния между ними.
  5. ЭПРА устанавливается в зоне минимального нагрева от ламп (обычно ближе к центру) и подключается к патронам. Каждый блок выпускается со схемой подключений на корпусе.
  6. Светильник крепится на стене или потолке с подключением к сети питания на 220 В через выключатель.
  7. Для защиты ламп желательно применять прозрачный колпак.

Устройство ЭПРА

Электронный пускорегулирующий аппарат (electronic ballast) является сложным электронным устройством. В состав входят:

  • Фильтр помех: необходим для нивелирования влияния помех из электросети и в нее;
  • Выпрямитель: необходим для преобразования переменного тока в постоянный;
  • Опционально: корректор мощности;
  • Сглаживающий фильтр: служит для снижения пульсаций;
  • Инвертор: повышает напряжение до необходимого;
  • Балласт: аналог электро-магнитного дросселя.

В некоторых моделях инвертор может быть дополнен регулятором яркости. Для этого необходим внешний светорегулятор (либо ручной, либо автоматический на базе фоторезистора). Схем разработано очень много. Элементная база ЭПРА для люминесцентных ламп (лл) весьма разнообразна: от мощных полевых транзисторов в мостовой схеме при нагрузках в сотни Ватт, до микросхем-драйверов в маломощных светильниках. Но тем не менее алгоритм работы един.

В упрощенном виде подключение одной лампы дневного света выглядит так:

Схема подключения ЭПРА с одной лампой

Т.е. подключение состоит всего из двух компонентов: люминесцентного источника света и электронного балласта. С точки зрения электрика это намного проще классического подключения люминесцентного светильника при использовании электромагнитного дросселя и стартера. На клеммы N и L подается сетевое напряжение. Вывод ground – заземление. Для работы электронного балласта подключение заземляющего контакта не является обязательным и служит лишь для безопасной эксплуатации. 

ЭПРА сложны и состоят из множества электронных компонентов. Человеку без инженерного образования понять схему очень сложно. К тому же не каждый электрик сможет разобраться во внутреннем устройстве.

Один из вариантов принципиальной схемы ЭПРА

Это достаточно простая схема для инженера-электроника. В упрощенном понимании работа электронного балласта выполняется следующем образом. Выпрямление производится двухполупериодным выпрямителем – диодным мостом. Сглаживание пульсаций выполняется электролитическим конденсатором, рассчитанным на напряжение выше сетевого, так как амплитудное значение синусоиды для сети переменного тока примерно в полтора раза выше сетевого (√2*220В). Остальными процессами управляет микросхема. За подачу напряжения на лампы отвечают полевые транзисторы. Далее преобразователь работает автономно, частота не изменяется.

Знание электроники позволяет создать и схему питания люминесцентной лампы от низковольтных источников. Схема получается достаточно компактна

Самое важно правильно намотать трансформатор

Принципиальная схема питания лл от низковольтного источника

Схема включения люминисцентной лампы без стартера (rapid start)

Недостатки схемы со стартером (долгое время прогревания
электродов, необходимость замены стартера и т.д.) привели к тому, что появилась
другая схема, где подогрев электродов осуществляется со вторичной обмотки трансформатора,
который одновременно является и индуктивным сопротивлением.

 

Отличительной внешней особенностью такого балласта является,
то что оба сетевых провода подключаются к балласту, четыре провода из балласта
подключаются к электродам лампы.

Существует много разновидностей такой схемы,
например, когда электронная схема отключает цепь подогрева электрода после включения
лампы (trigger start) и т.д. Балласты такого типа используются и в схеме с несколькими
лампами.

Нельзя в такой схеме использовать лампу, предназначенную для
стартерной схемы включения, поскольку она рассчитана на более длительный подогрев
электродов, и выйдет раньше времени из строя в такой схеме. Следует использовать
только лампы с обозначениями . В схеме должен быть предусмотрен
заземленный рефлектор вдоль лампы (иногда на лампе имеется металлическая полоска).
Это облегчает зажигание лампы.

  Рисунок показывает внутренний вид такого
балласта. Он состоит и дросселя (core and coil), конденсатора для коррекции коэффициента
мощности (power capacitor) и термопредохранителя (thermal protector). Внутри корпуса
все заливается терморассеиващим материалом (potting material)
 
назад к оглавлению 

Схемы подключения

Разработка такого электронного устройства  велась для минимизации конструкции светильника и замещения крупногабаритного дросселя и стартера одним единственным модулем, который подключается к сети питания переменного тока и к электродам люминесцентного источника света.

ЭПРА лишены всех минусов классических схем подключения.

Существуют модули, предназначенные для одновременного подключения четырех ламп.

Подключение ЭПРА к четырем лампам

Как в случае с одной или двумя лампами, схема не требует никаких дополнительных элементов. Модуль ЭПРА соединяется напрямую с лл.

Схема подключения ЭПРА 4х18 Вт (Пример:Navigator NB-ETL-418-EA3)

Схема подключения ЭПРА 2х36 Вт (Пример:ELECTRONIC BALLAST ETL-236)

Схема подключения ЭПРА 2х18 Вт (Пример:Navigator NB-ETL-218-EA3)

Во всех случаях выключатель рекомендовано ставить именно на фазовый провод. При наличии нуля потенциал может сохраняться. Об этом будет говорить слабое мерцание ламп в выключенном положении. С рабочими, но дешевыми ЭПРА иногда тоже наблюдается такое явление. Возможно, что причина в том, что с электролитического конденсатора не ушел полностью заряд. В этом случая поможет простая доработка: достаточно зашунтировать электролитический конденсатор резистором на сотню килоом.

Схема включения люминисцентной лампы со стартером (preheat start)

Традиционная схема, используемая очень давно, в случае
когда напряжение сети достаточно для зажигания лампы. В ней используется балласт,
представляющий собой большое индуктивное сопротивление — дроссель, и стартер —
маленькая неоновая лампа, служащая для предварительного подогрева электродов лампы.
Параллельно неоновой лампе в стартере стоит конденсатор для уменьшения радиопомех.
Также в схему может включатся и конденсатор для улучшения коэффициента мощности.

 

При включении лампы в сеть, вначале, возникает разряд
в стартере и через электроды лампы проходит небольшой ток, который подогревает
их, тем самым уменьшая напряжение зажигания лампы. При возникновении разряда в
лампе, напряжение между электродами падает. отключая цепь стартера. В старых схемах
вместо стартера использовалась кнопка, которую надо было держать в течении нескольких
секунд.

Балласт используется только для ограничения тока. Параметры
балласта рассчитать несложно самим (в случае, если вы нашли на помойке дроссель
и хотите его использовать).

Определить параметры индуктивного балласта можно очень
несложно пользуясь правилами расчета цепей перменного тока. Для примера рассмотрим
лампу мощностью 40Вт (F40T12) длиной 48″ (122 см), включенную в сеть напряжением
230В

Рабочий ток лампы составляет около 0.43A. Коэффициент
мощности лампы равен примерно 0.9 (в принципе, можно считать лампу активной нагрузкой).
Напряжение на лампе равно: 40Вт/(0.43А*0.9)=102В. Активная составляющая напряжения
равна: 102В*0.9=92В, реактивная равна 102В*sqrt(1-0.9^2)=44В.
Потери мощности в балласте составляют 9-10Вт. Отсюда, суммарный коэффициент мощности
равен: (40Вт+10Вт)/(230В*0.43A)=0.51 (сюда явно просится корректирующий конденсатор).
Активная составляющая падения напряжения на балласте равна: 230В*0.51-102В=15В,
реактивная составляющая 230В*sqrt(1-0.51^2)-44В=154В. Активное сопротивление балласта
равно 15В/0.43А=35 Ом, реактивное 154В/0.43=358 Ом. Индуктивность балласта на
частоте 50Гц равна 358/(2*31.4*50)=1.1Гн

Аналогичный расчет для лампы мощностью 30Вт (F30T12) длиной
36″ (91 см), у которой рабочий ток 0.37А, дает параметры балласта — активное
сопротивление равно 59 Ом, реактивное 450 Ом. Суммарный коэффициент мощности равен
0.45. Индуктивность балласта 1.4Гн

Отсюда, вообщем-то понятно, что произойдет если использовать
балласт для 40Вт лампы в схеме с 30Вт лампой — ток будет превышать номинальное
значение, что приведет к более быстрому выходу лампы из строя. И наоборот, использование
балласта от менее мощной лампы в схеме с более мощной лампой приведет к ограничению
тока и пониженной светоотдачей.

Для улучшения коэффициента мощности можно использовать
конденсатор. Например, в первом примере, для лампы 40Вт, конденсатор, включенный
параллельно, рассчитывается следующим образом. Ток через конденсатор 0.43А*sqrt(1-0.51^2)=0.37A,
реактивное сопротивление конденсатора равно 230В/0.37А=622Ом, емкость для сети
50Гц равняется: 1/(2*3.14*50*622)=5.1мкФ. Конденсатор должен быть на 250В. Его
можно включить и последовательно (рассчитывается аналогично), но при этом надо
использовать конденсатор на 450В.

 
назад к оглавлению 

Как проверить емкость конденсатора тестером

При неисправности конденсатора в схеме КПД светильника снижается до 40%. Для изделий мощностью 36-40 Вт устанавливается конденсатор, имеющий емкость 4,5 мкФ. Если она ниже нормы – КПД снижается, при более высокой емкости лампа начинает мерцать. Для проведения измерений конденсатор должен прозваниваться тестером. При касании щупами выводов рабочей детали прибор показывает бесконечное сопротивление. Если оно меньше 2 Мом – это признак большой утечки тока.

Один из вариантов принципиальной схемы ЭПРА

Это достаточно простая схема для инженера-электроника. В упрощенном понимании схема работает следующем образом. Выпрямление производится двухполупериодным выпрямителем – диодным мостом. Сглаживание пульсаций выполняется электролитическим конденсатором, рассчитанным на напряжение выше сетевого, так как амплитудное значение синусоиды для сети переменного тока примерно в полтора раза выше сетевого (√2*220В). Остальными процессами управляет микросхема. За подачу напряжения на лампы отвечают полевые транзисторы. Далее преобразователь работает автономно, частота не изменяется.

Знание электроники позволяет создать и схему питания люминесцентной лампы от низковольтных источников. Схема получается достаточно компактна

Самое важно правильно намотать трансформатор

Принципиальная схема питания люминесцентной лампы от низковольтного источника

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Лампы накаливания

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя

Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Принцип работы люминесцентного светильника

Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.

Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).

Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.

Watch this video on YouTube

Для чего нужен дроссель

Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:

  • формирование напряжения запуска;
  • ограничение тока через электроды.

Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.

Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.

В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.

Отличия дросселя от ЭПРА

Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.

В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:

  • длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
  • большие искажения формы напряжения питающей сети (cosф<0.5);
  • мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
  • большие массо-габаритные характеристики;
  • низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
  • низкая надежность запуска при отрицательных температурах.

Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.

Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.

Watch this video on YouTube

Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:

  • с предварительным подогревом электродов;
  • с холодным запуском.

В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.

Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).

Схемы с электронным дросселем имеют такие преимущества:

полное отсутствие мерцания;
широкий температурный диапазон использования;
малые искажения формы напряжения сети;
отсутствие акустических шумов;
увеличение срока службы источников освещения;
малые габариты и вес, возможность миниатюрного исполнения;
возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Коммуникации
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: