Генератор своими руками: пошаговая инструкция по изготовлению в домашних условиях

Что нужно для работы?

Для изготовления генератора, состоящего из комплекта солнечных батарей, требуются такие инструменты и материалы, как:

  • модули для преобразования солнечных лучей в энергию;
  • алюминиевые уголки;
  • деревянные рейки;
  • листы ДСП;
  • прозрачный элемент (стекло, плексиглас, оргстекло, поликарбонат) для создания защиты для пластин кремния;
  • саморезы и шурупы разных размеров;
  • плотный поролон толщиной 1,5-2,5 мм;
  • качественный герметик;
  • диоды, клеммы и провода;
  • шуруповерт либо набор отверток;
  • паяльник;
  • ножовка по дереву и металлу (либо болгарка).

В каком объеме понадобятся материалы, будет напрямую зависеть от запланированного размера генератора. Масштабная работа повлечет за собой дополнительные расходы, но в любом случае обойдется дешевле, чем покупной модуль.

Защитную основу для кремниевых пластин можно делать из стекла, оргстекла, поликарбоната или плексигласа. Первые три материала создают минимальную потерю преобразуемой энергии, а вот четвертый пропускает лучи значительно хуже и заметно снижает эффективность всего комплекса

Для конечного тестирования собранного агрегата используют амперметр. Он позволяет зафиксировать реальное КПД установки и помогает определить фактическую отдачу.

Процесс сборки

Тут все просто! К электродвигателю подключаются конденсаторы по схеме «треугольник». В процессе работы периодически нужно проверять температуру корпуса. Его нагрев может происходить из-за неправильно подобранных емкостей конденсатора.

За самодельным генератором, не обладающим автоматикой, нужно постоянно следить. Возникающий со временем нагрев будет понижать КПД. Тогда устройству нужно дать время для охлаждения. Время от времени следует замерять напряжение, число оборотов, и силу тока.

Вполне возможно, что самодельное устройство будут сопровождать частые поломки. Не стоит этому удивляться, так как герметичного монтажа всех элементов электрогенератора в домашних условиях получиться практически не может.

Итак, как сделать генератор из электродвигателя теперь надеюсь понятно. Если есть желание сконструировать аппарат, мощность которого должно хватать для одновременной работы бытовых приборов и осветительных ламп, или строительного инструмента, тогда нужно сложить их мощность и подобрать нужный двигатель. Желательно чтобы он был с небольшим запасом мощности.

Если при ручной сборке электрогенератора постигла неудача, не стоит отчаиваться. На рынке есть множество современных моделей, не нуждающихся в постоянном надзоре. Они могут быть различной мощности, и достаточно экономичными. В интернете есть фото генераторов, они помогут оценить габариты устройства. Единственный минус – это их дороговизна.

Особенности работы

Благодаря электромагнитной индукции внутри устройства вырабатывается ток. Оно состоит из двух частей: статор и ротор. Статор – это неподвижная часть агрегата, в ней расположены катушки для возбуждения электромагнитного поля. Ротор – это мобильная часть агрегата, на равном расстоянии от середины расположены магниты, которые снимают электромагнитное поле со статора. Тем самым осуществляя вращение.

Более низкие потери коэффициента полезного действия. Они меньше подвержены поломкам, так как асинхронные агрегаты более устойчивы к резким скачкам напряжения. У них более долгий срок службы и меньше греется корпус.

Принцип работы

Устройство состоит из ротора с лопастями, электрогенератора, мачты для установки, инверторов, аккумулятора, контролёра заряда, проводов, по которым проходит электроэнергия. Мачта может быть с растяжками и без них. В зависимости от типа сооружения, иногда она способна опускаться для профилактики или ремонта устройства.

Ветрогенератор — устройство для преобразования энергии силы ветра в электрическую

Работа ветрогенератора включает в себя 5 основных этапов:

  1. Ветер раскручивает ротор или лопасти.
  2. Происходит соединение электрогенератора и ротора.
  3. Выработанная энергия поступает сначала на контролёр заряда, а после этого на аккумулятор.
  4. Затем она проходит к инверторам и преобразуется из 12 в 220 Вольт (или из 24 в 380 Вольт).
  5. Электроэнергия подаётся в сеть.

Мощности ветрогенератора хватает для уличного освещения, сигнализации и других устройств

Выбор типа фотопреобразователя

Мероприятия по созданию своими руками солнечного генератора начинают с выбора типа фотоэлектрического кремниевого преобразователя.

Эти составляющие бывают трех видов:

  • аморфные;
  • монокристаллические;
  • поликристаллические.

Каждый вариант имеет свои достоинства и недостатки, а выбор в пользу любого из них делают, исходя из объема средств, выделенных на покупку всех компонентов системы.

Особенности аморфных разновидностей

Аморфные модули состоят не из кристаллического кремния, а из его производных (силан или кремниеводород). Путем напыления в вакууме, их тончайшим слоем наносят на высококачественную металлическую фольгу, стекло или пластик.

Готовые изделия имеют блеклый, размыто-серый оттенок. Видимые кристаллы кремния на поверхности не наблюдаются. Основным достоинством гибких солнечных батарей считается доступная цена, однако, КПД их очень невелико и колеблется в диапазоне 6-10%.

Аморфные фотоэлементы, изготовленные на основе кремния, обладают повышенной гибкостью, демонстрируют высокий уровень оптического поглощения (в 20 раз больший, чем у моно- или поликристаллических аналогов) и значительно более эффективно работают в пасмурную погоду

Специфика поликристаллических типов

Поликристаллические солнечные батареи производят при постепенном очень медленном охлаждении кремниевого расплава. Получившиеся изделия отличаются насыщенным синим цветом, имеют поверхность с четко выраженным рисунком, напоминающим морозный узор, и проявляют эффективность в районе 14-18%.

Дать более высокую КПД-производительность мешают наличествующие внутри материала области, отделенные от общей структуры зернистыми границами.

Поликристаллические фотоэлементы работают в течение всего 10 лет, но за это время их эффективность не снижается. Однако для монтажа изделий в единый комплекс обязательно используется прочная, твердая основа, так как листы довольно жесткие и требуют крепкой, надежной поддержки

Характеристика монократиллических вариантов

Монокристаллические модули характеризуются плотным темным цветом и состоят из цельных кристаллов кремния. Их эффективность превышает показатели прочих элементов и составляет 18-22% (при благоприятных условиях – до 25%).

Еще одним достоинством считается впечатляющий срок службы – по заявлению производителей свыше 25 лет. Однако, при продолжительном использовании КПД монокристаллов падает и спустя 10-12 лет фотоотдача уже составляет не более 13-17%.

Модули из монокристаллов стоят значительно дороже, чем другие виды оборудования. Производят их посредством распиливания искусственно выращенных кристаллов кремния

Из-за того, что фотоэлементы ценятся довольно высоко, многие поставщики предлагают покупателям продукцию группы B, то есть пригодные к полноценной эксплуатации фрагменты с небольшим дефектом. Их стоимость отличается от стандартной цены на 40-60%, благодаря чему сбор генератора обходится в разумную цену, не слишком бьющую по карману.

Выбор прозрачного элемента

Основные критерии выбора прозрачного элемента для создания генератора:

  • способность к поглощению ИК-излучения;
  • уровень преломления солнечного света.

Чем ниже показатель преломления, тем выше КПД продемонстрируют кремниевые пластины. Наиболее низким коэффициентом светоотражения обладают плексиглас и оргстекло. Поликарбонат тоже имеет далеко не лучшие показатели.

Для создания каркасных конструкций под домашние гелиосистемы рекомендуется по возможности использовать антибликовое прозрачное стекло или специальный вид поликарбоната с антиконденсатным покрытием, обеспечивающим необходимый уровень термической защиты.

Самыми лучшими характеристиками в плане поглощения ИК-излучения обладают прочное  термопоглащающее оргстекло и стекло с опцией ИК-поглощения. У простого стекла эти показатели значительно ниже. От эффективности ИК-поглощения зависит, будут ли греться в процессе эксплуатации кремниевые пластины или нет.

Если нагрев окажется минимальным, фотоэлементы прослужат долго и обеспечат стабильную отдачу. Перегрев пластин приведет к перебоям в работе и быстрому выходу из строя отдельных фрагментов системы или всего комплекса.

Достоинства и недостатки

В отличие от заводских самодельные бензиновые генераторы, изготовленные в домашних условиях, обычно имеют большие габариты и вес

К достоинствам собранного ручным способом изделия следует отнести:

  • Возможность не зависеть от перебоев в работе питающих подстанций, получая необходимый минимум электричества самостоятельно.
  • Генератор-самоделка настраивается на рабочие параметры, соответствующие конкретным запросам пользователя.
  • Его изготовление вместо покупного изделия позволит сэкономить значительные суммы (особенно – в ситуации с асинхронными машинами на 380 Вольт).

Что это такое

Сам термин «свободной энергии» появился, ещё когда широкомасштабно внедрялись двигатели внутреннего сгорания, когда от затрачиваемого угля зависела проблема получения нужных количеств энергии. Древесина и нефтепродукты тоже учитывались. Под свободной энергией принято понимать такую силу, для добычи которой не нужно тратить большое количество топлива. Значит, расходование ресурсов не требуется. В том числе — когда создают трансгенератор с самозапиткой.

Сейчас создают безтопливные генераторы, реализующие подобные схемы. Некоторые из них давно начали работать, получая энергию от солнца и ветра, других тому подобных природных явлений. Но существуют и другие концепции, направленные на обход закона о сохранении энергии.

Установка Тесла

Солнечная электростанция


Фото солнечных панелей на крыше домика, две панели по 100 Ватт Для этого по минимуму нам понадобится солнечные панели на 200-300 Ватт, можно конечно и на 100ватт всего, и даже меньше, если вам требуется совсем немного энергии. Но лучше брать с запасом, и сразу определится на какое напряжение строить систему. К примеру если вы хотите все питать от напряжения 12вольт, то лучше покупать панели на 12вольт, а если все будет питаться через инвертор, то систему можно стоить на 24/48 вольт. Например две панели по 100 Ватт, которые смогут дать 700-800 Ватт энергии за световой день. Когда есть солнце тут и от одной панели энергии много, но лучше брать сразу 2-3 штуки чтобы и в пасмурную погоду, и зимой энергия тоже была, так-как в пасмурную погоду выработка падает в 5-20 раз и чем больше панелей будет тем лучше.

На 12вольт есть масса электроники и различных зарядных устройств, у нас большинство автомобилей имеют бортовую сеть 12v и для этого напряжения есть практически все, и это доступно. К примеру от 12v работают светодиодные ленты, которые хорошо подходят для освещения, есть светодиодные лампочки 12v в любом магазине. Так-же для зарядки телефонов и планшетов есть автомобильные адаптеры, которые из 12/24v делают 5v. Такие адаптеры имеют или USB выход один или два и более, или с проводом под конкретную модель телефона или планшета, в общем заряжать электронику от 12-ти вольт проблем нет.

Если вам нужно питать от 12вольт ноутбук, то для этого тоже есть автомобильные зарядные адаптеры, которые из 12v делают 19v. В общем практически все есть чтобы питаться от двенадцати вольт, даже кипятильники, холодильники и электро чайники. Так-же есть и телевизоры на 12вольт, которые диагональю 15-19 дюймов и обычно ставятся на кухню. Но конечно если мощность солнечных панелей небольшая и емкость аккумуляторов тоже, то рассчитывать на то можно постоянно пользоваться мощными потребителями не приходится, разве что летом. фото потребители на 12в

Как работает генератор солнечной энергии?

Солнечный генератор представляет собой комплекс фотоэлектрических полупроводниковых элементов, напрямую преобразующих энергию солнца в электрическую.

Кванты вырабатываемого лучами света при попадании на фотопластину выбивают электрон с заключительной атомной орбиты рабочего элемента. Этот эффект создает множество свободных электронов, которые и образуют непрерывный поток электрического тока.

Совсем не обязательно, монтируя своими руками солнечный генератор, сразу собирать большой, масштабный комплекс. Можно начать с маленького агрегата, а при необходимости в будущем нарастить объемы

В качестве действующего материала используют кремний. Он отличается высокой эффективностью и обеспечивает коэффициент фотоэлектрического преобразования в обычном режиме на уровне 20%, а при благоприятных условиях – до 25%.

Благодаря выраженной эффективности кремниевых фотоэлементов генераторы, сделанные на их основе, гарантируют высокую отдачу при сравнительно небольшом объеме. Мощность агрегата размером в 1 метр под час выдает 125 Вт, что считается весьма внушительным результатом

На одну сторону пластины кремния наносят тонкое покрытие из пассивных химических элементов – бора или фосфора. Именно на этой поверхности в результате интенсивного воздействия солнечных лучей происходит активное высвобождение электронов. Фосфорная пленка надежно удерживает их в одном месте и не позволяет разлетаться.

На самой рабочей пластине располагаются металлические «дорожки». На них строятся свободные электроны, создавая таким образом, упорядоченное движение, то есть, электрический ток.

К минусам пластин относят только сложность и затратность процесса очистки самого кремния, и, чтобы избежать этих проблем, активно осваивают использование альтернатив в виде галлия, кадмия, индия и различных соединений меди. Однако пока что реальных конкурентов у кремниевых элементов еще нет.

Подключение катушек

Собранный своими руками генератор для ветряка может быть как однофазным, так и трехфазным. Большинство начинающих выбирают первый вариант, так как он немного проще и легче. Но у однофазного подключения есть недостатки в виде повышенной вибрации под нагрузкой (гайки могут раскручиваться) и своеобразный гул. Если данные показатели не имеют значения, то катушки требуется соединять следующим образом: конец первой нужно спаять с концом второй, вторую катушку с третьей и т.д. Если что-то перепутать — схема работать не будет. Хотя здесь сложно что-то сделать не так.
Трехфазная схема хоть и требует большей внимательности, но при этом установка под нагрузкой не гудит и практически не вибрирует, а разведенные фазы под 120 градусов повышают мощность в определенных режимах работы. Трехфазное подключение катушек своими руками заключается в соединении их через 3 единицы. Например, при использовании 12 катушек распаиваются для первой фазы 1, 4, 7 и 10. Для второй — 2, 5, 8 и 11. Для третьей — 3, 6, 9 и 12. Все шесть получившихся концов можно смело выводить наружу из статора. Соединять фазы можно звездой (для получения большего напряжения) или треугольником (для получения большей силы тока).

Элементы основы можно заказать у токаря. Это будет более верным решением, так как автомобильная ступица и тормозные диски довольно массивные. Также можно сделать небольшую хитрость в виде увеличения диаметра всего колеса, ведь чем он больше, тем выше радиальная скорость ветрогенератора.

Дисковые генераторы имеют простую конструкцию, высокую эффективность и у них отсутствует эффект залипания. Дополнительно, ветровые установки, созданные на их основе, довольно легкие. Но по причине отсутствия сердечников, магнитов требуется использовать в два раза больше. Рассмотренный вариант является самым простым для создания ветряка своими руками.

Выбор типа фотопреобразователя

Мероприятия по созданию своими руками солнечного генератора начинают с выбора типа фотоэлектрического кремниевого преобразователя.

Эти составляющие бывают трех видов:

  • аморфные;
  • монокристаллические;
  • поликристаллические.

Каждый вариант имеет свои достоинства и недостатки, а выбор в пользу любого из них делают, исходя из объема средств, выделенных на покупку всех компонентов системы.

Особенности аморфных разновидностей

Аморфные модули состоят не из кристаллического кремния, а из его производных (силан или кремниеводород). Путем напыления в вакууме, их тончайшим слоем наносят на высококачественную металлическую фольгу, стекло или пластик.

Готовые изделия имеют блеклый, размыто-серый оттенок. Видимые кристаллы кремния на поверхности не наблюдаются. Основным достоинством гибких солнечных батарей считается доступная цена, однако, КПД их очень невелико и колеблется в диапазоне 6-10%.


Аморфные фотоэлементы, изготовленные на основе кремния, обладают повышенной гибкостью, демонстрируют высокий уровень оптического поглощения (в 20 раз больший, чем у моно- или поликристаллических аналогов) и значительно более эффективно работают в пасмурную погоду

Специфика поликристаллических типов

Поликристаллические солнечные батареи производят при постепенном очень медленном охлаждении кремниевого расплава. Получившиеся изделия отличаются насыщенным синим цветом, имеют поверхность с четко выраженным рисунком, напоминающим морозный узор, и проявляют эффективность в районе 14-18%.

Дать более высокую КПД-производительность мешают наличествующие внутри материала области, отделенные от общей структуры зернистыми границами.


Поликристаллические фотоэлементы работают в течение всего 10 лет, но за это время их эффективность не снижается. Однако для монтажа изделий в единый комплекс обязательно используется прочная, твердая основа, так как листы довольно жесткие и требуют крепкой, надежной поддержки

Характеристика монократиллических вариантов

Монокристаллические модули характеризуются плотным темным цветом и состоят из цельных кристаллов кремния. Их эффективность превышает показатели прочих элементов и составляет 18-22% (при благоприятных условиях – до 25%).

Еще одним достоинством считается впечатляющий срок службы – по заявлению производителей свыше 25 лет. Однако, при продолжительном использовании КПД монокристаллов падает и спустя 10-12 лет фотоотдача уже составляет не более 13-17%.


Модули из монокристаллов стоят значительно дороже, чем другие виды оборудования. Производят их посредством распиливания искусственно выращенных кристаллов кремния

Из-за того, что фотоэлементы ценятся довольно высоко, многие поставщики предлагают покупателям продукцию группы B, то есть пригодные к полноценной эксплуатации фрагменты с небольшим дефектом. Их стоимость отличается от стандартной цены на 40-60%, благодаря чему сбор генератора обходится в разумную цену, не слишком бьющую по карману.

Как сделать дома солнечную электростанцию своими руками?

Для самостоятельного изготовления конструкции потребуются указанные выше материалы и некоторые дополнительные приспособления (специальная проводка с коннекторами и разъемами, гелиевые аккумуляторные батареи, установочные детали).

Сборка самодельной солнечной станции начинается с монтажа установочных элементов. Они представляют собой жесткую раму из профильной трубы. Конструкция этой детали зависит от места установки, но общая конфигурация имеет стандартную компоновку. Представляет элемент собой прямоугольник, с прикрепленными к нему специальными прижимными приспособлениями с резиновой подушкой. Конструкцию можно собрать непосредственно на крыше или на земле.

Дымогенераторы промышленного производства

При отсутствии возможности изготовить generator для коптильни самостоятельно, можно рассмотреть вариант покупки коптильни. Многочисленные магазины помогут сделать выбор, ведь их ассортимент достаточно широк. Ниже представлены цены на несколько моделей для холодного копчения от популярных производителей:

  1. HANHI, Zmei. Цена 9800−10800 руб. Емкость для топлива объемом 10 литров. Одной загрузки достаточно на 10 час работы. Мощность встроенного электронагревателя 1 кВт. Наличие фильтра, термометра, воздушного змеевика для охлаждения дыма.
  2. ДымОК. Цена 4700−5200 руб. Емкость для топлива объемом 0.5 кг. Материал корпуса — нержавеющая сталь AISI 304. Время работы до 6.5 час. Наличие компрессора, соединительных шлангов в комплекте.
  3. УЗБИ, Дым Дымыч 01М. Цена 2800−3900 руб. Одной загрузки достаточно на 15 час работы. Наличие компрессора в комплекте.
  4. Smoke 2.0, Smoke House. Цена 1440−1800 руб. Емкость для топлива объемом 2.5 литров. Материал корпуса — нержавеющая сталь, толщина 2 мм. Время работы 3-6 час.
  5. Merkel, Premium. Цена 9900−10800 руб. Одной загрузки достаточно на 12 час работы. Материал корпуса — нержавеющая сталь, толщина 2 мм. Наличие фильтра и специальной зажигалки в комплекте.

Для более подробного изучения вопроса изготовления дымогенераторов своими руками, рекомендуется прежде всего изучить подобные схемы и чертежи в интернете. На их основе желательно подготовить свою документацию, где учитываются все особенности вашей конструкции. Тогда устройство для копчения, сделанное вами самостоятельно, получится качественным, высокопроизводительным и безопасным.

Определение солнечной батареи

Конструктивно солнечная батарея представляет собой схему преобразователя одного вида энергии в другой. В частности, энергия света преобразуется в электрическую энергию. Причём результатом преобразования становится электрический ток постоянной величины.

Активными элементами конструкции солнечной панели выступают полупроводники, обладающие свойствами фотохимического синтеза. Например, кремний (Si), применением которого были отмечены самые первые исследования в области получения электричества солнца.

Простейший набор из солнечной панели и автомобильного аккумулятора уже составляет конструкцию настоящей домашней энергетической установки

На текущий момент кремний уже не рассматривается безальтернативным химическим элементом, опираясь на который есть смысл сооружать солнечные батареи из панелей, в том числе своими руками.

Более перспективными и эффективными теперь видятся другие представители таблицы Менделеева (в скобках цифры энергетической отдачи):

  1. Арсенид галлия GaAs (кристаллический 25,1).
  2. Фосфит индия InP ( 21,9).
  3. Фосфат индия с галлием + Арсенид галлия + Германий GaInP + GaAs + Ge (32).

Рассматривать солнечную панель глазами обывателя следует как пластину полупроводника (кремния и т.п.), каждая из сторон которой является положительным и отрицательным электродом.

Под влиянием света солнца, в результате химического фотосинтеза, на электродах панели образуются электрические потенциалы. Казалось бы, всё просто. Остаётся только подключить провода к нагрузке и пользоваться электричеством. Но на деле всё несколько иначе.

Принцип работы электрогенератора

Работа генераторов реализуется по принципу электромагнитной индукции, когда в замкнутой рамке происходит наводка тока за счет пересечения ее вращающимся магнитным полем. Магнитное поле создают обмотки либо постоянные магниты.

Когда из коллектора электродвижущая сила достигает замкнутого контура и узлов щетки, то ротор начинает вращаться сообща с магнитным потоком. Так создается напряжение в подпружиненных щетках, прижатых к коллекторам пластинчатого вида.

Далее электроток передается к выходным клеммам, проходит в сеть, распространяется по генератору.

Используют генераторы переменного и постоянного тока. Электрогенератор переменного тока малогабаритен, не образовывает вихревые токи, при этом имеет возможность функционировать в экстремальных температурах. Аппарат с постоянным током не требует тщательного контроля, обладает значительным числом ресурсов.

Конструкционно генератор включает в себя: щетки со щеткодержателями, коллектор, якорную обмотку, якорь, стартер, кольца контактные, обмотку стартера, ротор, корпус, вентилятор, привод и станину

Генератор переменного тока может быть как синхронным, так и асинхронным. Первый – с постоянным электрическим магнитом и количеством вращений статора равных роторным, формирующим магнитное поле. Преимуществами такого генератора называют стабильно высокое напряжение, к недостаткам относят перегрузку по токам из-за завышенной нагрузки на регулятор, повышающий ток обмотки ротора.

Конструкция асинхронного генератора: короткозамкнутый ротор, статор. Когда вращается ротор генератор индуцирует ток, а магнитное поле выдает напряжение синусоидального типа.

Разбор ошибок конструирования

Сборка ветрогенератора в бытовых условиях собственными руками – дело, конечно же, не безошибочное. Даже в конструкциях промышленных ветряков инженерами допускаются ошибки. Но на ошибках учатся, о чём подтверждают вполне состоявшиеся бытовые конструкции.

Итак, среди ошибок при устройстве бытовых ветряных генераторов часто фигурирует такая деталь, как отсутствие в конструкции генератора модуля торможения. Стандартное исполнение таких приборов (автомобильных или тракторных) такой детали не предусматривает. Значит, генератор необходимо дорабатывать.

Однако не каждому «конструктору» хочется заниматься этим тонким делом. Многие игнорируют эту деталь, надеясь на «авось». Как результат – при сильном ветре винт раскручивается до неимоверно высоких скоростей. Подшипники генератора не выдерживают, разбивают посадочные места алюминиевых крышек. Происходит клин ротора.

Разрушенный ветрогенератор по причине недоработок в конструкции. Ошибки конструирования и монтажа подобных конструкций приводят к тяжёлым последствиям

К этой же теме относится недоработка, связанная с отсутствием ограничителя поворота флюгера. Нередко этот компонент попросту забывают установить и вспоминают только тогда, когда потоки ветра начинают раскручивать «петушка» вокруг своей оси, как юлу в передаче «Что? Где? Когда?». Результат плачевный.

Минимум ущерба  – перекручивание и обрыв электрического кабеля, а в тяжёлых случаях – разнос всей конструкции.

Другая примечательная ошибка сборки – неправильный расчёт точки центра тяжести на основании флюгера. В этом случае устройство какое-то время может функционировать нормально. Но со временем образуется перекос на подшипниковом узле, свобода вращения ограничивается, эффективность конструкции по отдаче энергии резко снижается.

О том, как правильно рассчитать ветрогенератор, узнаете из предложенной нами статьи.

Нередко током, полученным от генератора, пытаются напрямую питать аккумуляторную батарею. Совсем скоро начинают удивляться – почему аккумулятор не держит заряд или обнаруживают пробой 2-3 банок.

Это банальная и естественная ошибка, так как в любом случае заряд АКБ должен проходить в условиях определённых токов и напряжений. Здесь нужен контроль этого процесса.

Домашним мастерам, заинтересованным темой сборки ветрогенератора, предлагаем ознакомиться еще с одним оригинальным вариантом. В предложенной статье описано изготовление генерирующей установки из бросовых деталей стиралки.

Подводя итоги

Да, экономить сегодня стало “модно”! Целесообразное внедрение принципиально новых энергетических технологий в будущем позволит людям отказаться от использования атомных, тепловых, бензиновых, дизельных и газотурбинных станций. Люди, научившиеся “добывать” электричество, своими руками себя же и уничтожают, используя устаревшие, но крайне выгодные для “некоторых” методы получения жизненно необходимой человечеству энергии. В случае своевременно принятых мер нам все-таки удастся вернуть планете Земля первозданный облик, оставив в покое истощенные недра, и помочь нашему космическому дому восстановить доведенную до катастрофического состояния экологию.

Заключение

Из доступных в средней полосе России способов альтернативного получения электроэнергии применение солнечных батарей является наиболее привлекательным.

В первую очередь – благодаря дешевизне производимых в Китае поликристаллических кремниевых фотоэлементов, которые позволяют собирать достаточно бюджетные конструкции. В зависимости от потребностей и возможностей солнечная батарея может быть изготовлена с разнообразными характеристиками – от компактной складной конструкции для зарядки телефона или навигатора до крупногабаритных панелей, работающих в системах резервного питания совместно с аккумуляторными батареями и инверторными преобразователями.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Коммуникации
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector