Выбор типа теплового насоса
Основным показателем этой системы обогрева является мощность. От мощности в первую очередь будут зависеть и финансовые затраты на покупку оборудования и выбор того либо иного источника низкотемпературного тепла. Чем выше мощность тепловой насосной системы, тем больше стоимость комплектующих элементов.
В первую очередь имеется в виду мощность компрессора, глубина скважин для геотермических зондов, либо площадь для размещения горизонтального коллектора. Правильные термодинамические расчеты являются своеобразной гарантией того, что система будет эффективно работать.
При наличии рядом с личным участком водоема наиболее рентабельным и производительным выбором станет тепловой насос вода-вода
Для начала следует изучить участок, который планируется для монтажа насоса. Идеальным условием будет наличие на этом участке водоема. Использование варианта типа вода-вода значительно сократит объем земляных работ.
Использование тепла земли напротив предполагает большое количество работ, связанных с выемкой грунта. Системы, которые в качестве низкопотенциального тепла используют водную среду, считаются наиболее эффективными.
Устройство теплового насоса, извлекающего тепловую энергию из грунта, предполагает проведение внушительного количества земляных работ. Закладывается коллектор ниже уровня сезонного промерзания
Использовать тепловую энергию грунта можно двумя способами. Первый предполагает бурение скважин диаметром 100-168 мм. Глубина таких скважин, в зависимости от параметров системы, может достигать 100 м и более.
В эти скважины помещают специальные зонды. При втором способе используется коллектор из труб. Такой коллектор размещается под землей в горизонтальной плоскости. Для этого варианта необходимо достаточно большая площадь.
Для укладки коллектора идеальными считаются участки с влажным грунтом. Естественно, бурение скважин обойдется дороже, нежели горизонтальное расположение коллектора. Однако не на каждом участке есть свободные площади. На один кВт мощности теплового насоса нужно от 30 до 50м² площади.
Сооружение для забора тепловой энергии одной глубокой скважиной может оказаться немногим дешевле рытья котлована
Но веский плюс заключается в существенной экономии места, что важно для владельцев небольших участков. В случае с наличием на участке высоко залегающего горизонта грунтовых вод, теплообменники можно устроить в двух расположенных на расстоянии около 15 м друг от дружки скважинах
В случае с наличием на участке высоко залегающего горизонта грунтовых вод, теплообменники можно устроить в двух расположенных на расстоянии около 15 м друг от дружки скважинах.
Отбор тепловой энергии в таких системах путем перекачивания грунтовой воды по замкнутому контуру, части которого расположены в скважинах. Такая система нуждается в установке фильтра и периодической чистке теплообменника.
Самая простая и дешевая схема теплового насоса основана на извлечении тепловой энергии из воздуха. Некогда она стала базой для устройства холодильников, позже согласно ее принципам разработаны были кондиционеры.
Самая простая тепловая насосная система получает энергию из воздушной массы. Летом она участвует в отоплении, зимой в кондиционировании. Минус системы в том, что в самостоятельном исполнении агрегат с недостаточной мощностью
Эффективность различных типов данного оборудования не одинакова. Наименьшими показателями обладают насосы, использующие воздушную среду. К тому же эти показатели напрямую зависят от погодных условий.
Грунтовые разновидности тепловых насосов имеют стабильные показатели. Коэффициент эффективности данных систем варьируется в пределах 2,8 -3,3. Наибольшей эффективность обладают системы вода-вода. Это связано, в первую очередь, со стабильностью температуры источника.
Надо заметить, что чем глубже расположен в водоеме коллектор насоса, тем стабильнее будет температура. Для получения мощности системы в 10КВт, необходимо около 300 метров трубопровода.
Основным параметром, характеризующим эффективность работы теплового насоса, считается его коэффициент преобразования. Чем выше коэффициент преобразования, тем эффективнее считается тепловой насос.
Коэффициент преобразования теплового насоса выражается через отношение показателей теплового потока и электрической мощности, затраченной на работу компрессора
Рентабельность и целесообразность использования тепловых насосов
Чтобы достигнуть существенной экономии на отопительном бюджете на долгие годы, необходимо затратить значительные средства на этапе проектирования и установки. Окупаемость такой отопительной системы отложена во времени, она зависит от условий эксплуатации.
Если в доме пол и стены утеплены правильно, то тепловой насос будет работать максимально эффективно. Потери тепла не должны превышать 100 Вт на 1 кв. метр.
Ниже представлено сравнение затрат на отопление при использовании различных энергоносителей.
Чтобы экономить на отоплении, придётся потратить немалую сумму на установку теплового насоса
Очень выгодно включать насос в систему теплых полов или стен, где рабочая температура составляет примерно 40 градусов. Показателем экономии можно считать отсутствие перегрева отопительного контура и замерзания теплоносителя при отключении насоса, что позволяет повысить надежность системы и снизить риск аварии и частоту профилактических и ремонтных работ.
Стоимость установки такой системы, зависит от нескольких факторов:
- площадь отапливаемых помещений дома;
- разновидность конструкции насоса;
- системы отопления и трубы, проложенные в доме;
- показатели потерь тепла.
Для небольшого дома площадью 130 кв. м при установке насоса с грунтовым забором тепла, стоимость оборудования составит 450 000 р., а монтаж потянет на 300 000 р.
Насос «воздух-вода» будет стоить 300 00 р., установка составит 80 000 р., это самый недорогой вариант.
Стоимость установок начинается от 450 тыс. руб.
Максимальные затраты потребуются при глубоком бурении с низкой точкой промерзания и при большой площади дома, например, 400 кв. м. Оборудование обойдется в 800 000 р., а установка – в 360 000 р. Затраты включают в себя все проектные и земляные, наземные работы и все элементы насоса и отопительной системы.
Материал актуализирован 29.03.2018
Применение для охладительных систем
Большим преимуществом термонасосов является то, что это оборудование может не только отапливать здание, но и охлаждать помещение.
Конструктивное решение возможности охлаждения зачастую интегрировано в теплонасос изначально, на этапе производства, и почти у всех изготовителей существую модели насосов, которые умеют кондиционировать дом (функция Natural Cooling).
Если насосное оборудование не имеет эту возможность, то его можно переделать. Для этого дополнительно потребуется смонтировать гидравлическую развязку, которая устанавливается вне насоса. Этот вариант не потребуют значительных капиталовложений.
Подавать генерируемый холод в здание можно различными способами. Такую функцию можно возложить на охлаждающие панели, устанавливаемые на поверхности стен, «холодный» теплый пол, отопительные радиаторы или фанкойл — агрегат, где в корпусе находится обдуваемый с помощью вентилятора теплообменник.
Как это работает
Тепловой насос, принцип работы которого основан на цикле Карно, расходует энергию не на нагрев теплоносителя, а на перекачивание внешнего тепла. Технология не нова. Тепловые насосы трудятся в наших домах в составе холодильников уже десятки лет. В холодильнике тепло из камеры перемещается наружу. В новейших отопительных установках реализуется обратный процесс. Несмотря на низкую температуру за бортом, энергии там предостаточно.
Забирать тепло у более холодного тела и отдавать его более горячему становиться возможным, благодаря свойству вещества потреблять энергию при испарении и выделять ее при конденсации, а также повышать свою температуру в результате сжатия. Необходимые условия для кипения и испарения создаются путем изменения давления. В качестве рабочего тела используют жидкость с низкой температурой кипения – фреон.
В тепловом насосе преобразования происходят в 4 этапа:
- Охлажденное ниже температуры внешней среды жидкое рабочее тело циркулирует по контактирующему с ней змеевику. Жидкость нагревается и испаряется.
- Газ сжимается компрессором, в результате чего его температура превышается.
- В более холодном внутреннем змеевике происходит конденсация с выделением тепла.
- Жидкость перепускается через дросселирующее устройство для поддержания разности давлений между конденсатором и испарителем.
5 основных выгод для владельцев установок
К преимуществам систем обогрева с тепловыми насосами относят такие:
- Экономическая эффективность. При затратах 1 кВт электрической энергии можно получить 3-4 кВт тепловой. Это усредненные показатели, т.к. коэффициент преобразования тепла зависит от типа оборудования и особенностей конструкции.
- Экологическая безопасность. При работе тепловой установки в окружающую среду не попадают продукты сгорания или другие потенциально опасные вещества. Оборудование озонобезопасно. Его применение позволяет получить тепло без малейшего вреда для экологии.
- Универсальность применения. При установке систем отопления, работающих от традиционных источников энергии, владелец дома попадает в зависимость от монополистов. Солнечные батареи и ветрогенераторы не всегда рентабельны. Зато тепловые насосы можно устанавливать где угодно. Главное – правильно выбрать тип системы.
- Многофункциональность. В холодное время года установки отапливают дом, а в летнюю жару способны работать в режиме кондиционеров. Оборудование применяют в системах ГВС, подключают к контурам теплых полов.
- Безопасность эксплуатации. Теплонасосам не требуется топливо, при их работе не выделяются токсичные вещества, а предельная температура узлов оборудования не превышает 90 градусов. Эти отопительные системы не опаснее холодильников.
Идеальных приборов не существует. Тепловые насосы надежны, долговечны и безопасны, но их стоимость напрямую зависит от мощности.
Качественное оборудование для полноценного обогрева и горячего водоснабжения дома 80 м.кв. обойдется примерно в 8000-10000 евро. Самоделки маломощны, их можно использовать для отопления отдельных комнат или подсобных помещений.
Эффективность установки зависит от теплопотерь дома. Оборудование имеет смысл устанавливать только в тех зданиях, где обеспечен высокий уровень изоляции, а показатели теплопотерь не выше 100 Вт/м.кв.
Оборудование надежно и редко ломается
Если оно самодельное, то важно подобрать качественный компрессор, лучше всего – от холодильника или кондиционера проверенной марки
Принцип работы насоса воздух-вода
Как уже было сказано, основным источником тепловой энергии для установок этого типа является атмосферный воздух. В принципиальной основе работы воздушных насосов лежит физическое свойство жидкостей к поглощению и отдаче тепла во время фазового перехода из жидкого состояния в газообразное, и обратно. В результате смены состояния выделяется температура. Система работает по принципу холодильника наоборот.
Для эффективного использования этих свойств жидкости легкокипящий хладагент (фреон, хладон) циркулирует по замкнутому контуру в конструкцию которого входят:
- компрессор с электроприводом;
- обдуваемый вентилятором испаритель;
- дроссельный (расширительный) клапан;
- пластинчатый теплообменник;
- медные или металлопластиковые циркуляционные трубки, соединяющие основные элементы схемы.
Движение хладагента по контуру осуществляется благодаря давлению, развиваемому компрессором. Для снижения тепловых потерь трубы покрываются теплоизоляционным слоем из искусственного каучука или вспененного полиэтилена с защитным металлизированным покрытием. В качестве хладагента используют хладон или фреон, способный закипать при отрицательной температуре и не замерзающий до -40°C.
Весь процесс работы состоит из следующих последовательных циклов:
- В радиаторе испарителя находится жидкий хладагент, температура которого ниже, чем у наружного воздуха. Во время активного обдува радиатора тепловая энергия от низко потенциального воздуха передается хладону, который закипает и переходит в газообразное состояние. При этом его температура повышается.
- Подогретый газ поступает в компрессор, где в процессе сжатия еще более нагревается.
- В сжатом и разогретом состоянии пары хладагента подаются в пластинчатый теплообменник, где по второму контуру циркулирует теплоноситель системы отопления. Поскольку температура теплоносителя значительно ниже, чем у разогретого газа, фреон активно конденсируется на пластинах теплообменника, отдавая тепло в систему отопления.
- Охлажденная парожидкостная смесь поступает на дроссельный клапан, который пропускает к испарителю только охлажденный жидкий хладагент с низким давлением. После чего весь цикл повторяется.
Для увеличения эффективности теплоотдачи трубки на испарителя навито спиральное оребрение. Расчет системы отопления, выбор циркуляционных насосов и другого оборудования должен учитывать гидравлическое сопротивление и коэффициент теплопередачи пластинчатого теплообменника установки.
Видео обзор устройства системы и ее работы
Инверторные тепловые насосы
Наличие инвертора в составе установки позволяет обеспечить плавный пуск оборудования и автоматическое регулирование режимов в зависимости от температуры наружного воздуха. Это позволяет максимально повысить эффективность работы теплового насоса за счет:
- достижения КПД на уровне 95-98%;
- снижения потребления энергии на 20-25%;
- минимизации нагрузок на электрическую сеть;
- увеличения сроков эксплуатации установки.
В результате температура внутри помещений стабильно поддерживается на одном уровне, не зависимо от изменения погоды. При этом наличие инвертора в комплекте с автоматизированным блоком управления обеспечит не только зимний обогрев, но и подачу охлажденного воздуха летом при жаркой погоде.
В то же время следует учесть, что наличие дополнительного оборудования всегда влечет за собой его удорожание и увеличение срока окупаемости.
Скважина приемная
Самая большая проблема при установке теплового насоса по открытой схеме – это, когда вода сбрасывается сверху в скважину. Так неправильно. Труба должна идти практически до самого дна скважины и приподниматься от него на 0,5-1 метр. Внизу все должно бурлить. При сбросе воды сверху скважина может быстро заилиться и перестать принимать воду. Происходит перелив. Если это произойдет при хорошем минусе на улице, то каток вам обеспечен. Поэтому, если рядом имеется река или какой-нибудь водоем, ливневка или дренажная траншея, то лучше приемную скважину соединить с ними переливной трубкой, на случай перелива. Если ничего рядом нет, то придется бурить не одну, а две или более скважин на прием. Ответа на вопрос, на сколько хватит приемной скважины, не знает никто. Она может принимать много лет, а может забиться через один отопительный сезон. Поэтому самый большой недостаток открытой схемы – непредсказуемость.
Еще один важный момент. Приемная скважина должна располагаться от дебетовой ниже по течению, на расстоянии не менее 6 метров. Это еще одна неясность. Как определить, в каком направлении течет подземная река. Ответ на этот вопрос даст только эксперимент. Если в дебетовой скважине после запуска теплового насоса вода не будет опускаться, все нормально, угадали. Если она начнет падать по температуре, то скважины нужно менять местами, а погружной насос переносить. Трубопроводы дебетовой и сливной скважины лучше выполнять из ПНД трубы, как более дешевого материала. Надежности и долговечности таких труб тоже достаточно.
Идеальный вариант, когда скважины расположены поперек подземного течения. Тогда достаточно сделать в колодце скважины разъемное соединение трубопровода, прокинуть в оба колодца питание с разъемным водонепроницаемым штекером и можно раз в год делать реверс скважин, меняя дебетовую и приемную местами.
Что такое тепловой насос для отопления частного дома? Как работает?
Специальное устройство, которое способно извлекать тепло из окружающей среды называется тепловой насос.
Применяются такие приборы в качестве основного или дополнительного метода обогрева помещений. Некоторые устройства также работают на пассивное охлаждение здания — при этом насос применяется как для летнего охлаждения, так и для зимнего обогрева.
В качестве топлива используется энергия окружающей среды. Такой обогреватель извлекает тепло из воздуха, воды, грунтовых вод и так далее, поэтому это устройство относят к классу возобновляемых источников энергии.
Важно! Для работы таких насосов требуется подключение к электросети. В состав всех тепловых аппаратов входит испаритель, компрессор, конденсатор и расширительный клапан
В зависимости от источника тепла различают водяные, воздушные и другие устройства
Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло)
В зависимости от источника тепла различают водяные, воздушные и другие устройства. Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло)
В состав всех тепловых аппаратов входит испаритель, компрессор, конденсатор и расширительный клапан. В зависимости от источника тепла различают водяные, воздушные и другие устройства. Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло).
Большинство приспособлений работают как при положительных, так и при отрицательных температурах, однако КПД устройства напрямую зависит от внешних условий (т. е. чем выше температура окружающей среды, тем мощнее будет устройство). В общем случае прибор работает следующий образом:
- Тепловой насос вступает в контакт с окружающими условиями. Обычно аппарат извлекает тепло из земли, воздуха или воды (в зависимости от типа устройства).
- Внутри прибора установлен специальный испаритель, который заполнен хладагентом.
- При контакте с внешней средой хладагент закипает и испаряется.
- После этого хладагент в виде пара поступает в компрессор.
- Там он сжимается — благодаря этому серьёзно повышается его температура.
- После этого разогретый газ поступает в систему отопления, что приводит к нагреванию основного теплоносителя, который и используется для отопления помещений.
- Хладагент понемногу охлаждается. В конце он превращается обратно в жидкость.
- Потом жидкий хладагент поступает в специальный клапан, который серьёзно понижает его температуру.
- В конце хладагент вновь попадает в испаритель, после чего цикл нагрева повторяется.
Фото 1. Принцип работы теплового насоса типа грунт-вода. Синим цветом показан холодный теплоноситель, красным — горячий.
Преимущества:
- Экологичность. Такие устройства относятся к возобновляемым источникам энергии, которые не загрязняют атмосферу своими выбросами (тогда как в случае использования природного газа образуются вредные парниковые испарения, а для производства электроэнергии часто применяется сжигание угля, из-за чего также загрязняется воздух).
- Хорошая альтернатива газу. Тепловой насос идеально подойдёт для отопления помещений в случаях, когда использование газа затруднительно по тем или иным причинам (например, когда дом находится вдали ото всех основных инженерных сетей). Насос также выгодно отличается от газового отопления тем, что для установки такого прибора не требуется получать государственное разрешение (но при бурении глубокой скважины его все же придётся получить).
- Недорогой дополнительный источник тепла. Насос идеально подойдёт в качестве дешёвого вспомогательного источника питания (оптимальный вариант — применение газа зимой и насоса — весной и осенью).
Недостатки:
- Тепловые ограничения в случае использования водяных насосов. Все тепловые аппараты хорошо функционируют при положительных температурах, тогда как в случае работы при отрицательных температурах многие насосы перестают работать. В основном это связано с тем, что при этом вода замерзает, что делает невозможным её применение как источника тепла.
- Могут появиться проблемы с устройствами, которые в качестве тепла используют воду. Если для нагрева применяется вода, то потребуется найти её стабильный источник. Чаще всего для этого следует пробурить скважину, благодаря чему расходы на монтаж устройства могут возрасти.
Внимание! Насосы обычно стоят в 5—10 раз дороже газового котла, следовательно использование таких приборов в целях экономии в ряде случаев может быть нецелесообразно (чтобы насос окупился, потребуется подождать несколько лет)
Особенности тепловой системы воздух-вода
Тепловой насос, которому посвящена эта статья, в отличие от других модификаций подобного устройства (в частности, вода-вода и грунт-вода), обладает рядом достоинств:
- экономит электричество;
- для установки не потребуются масштабные земельные работы, бурение скважин, получение специальных разрешений;
- если подключить систему к солнечным батареям, то можно обеспечить полную ее автономность.
Веское преимущество тепловой системы, извлекающей энергию ветра и передающей ее воде, заключается в стопроцентной экологической безопасности.
Перед тем, как приступать к конструированию насоса, необходимо выяснить, в каких случаях система проявляет себя максимально эффективно, а когда ее использование нецелесообразно.
Тепловая насосная система, извлекающая энергию из воздушной массы, может использоваться для подогрева всех видов теплоносителей, применяющихся на территории СНГ: воды, воздуха, пара
Специфика применения и работы
Тепловой насос продуктивно работает исключительно в температурном диапазоне от -5 до +7 градусов. При температуре воздуха от +7 система будет вырабатывать больше тепла, чем необходимо, а при показателе ниже -5 – недостаточно для обогрева. Это связано с тем, что концентрированный фреон, находящийся в конструкции, закипает при температуре -55 градусов.
Теоретически система может вырабатывать тепло и в 30-градусный мороз, но его будет недостаточно для обогрева, ведь теплопроизводительность напрямую зависит от разности температуры кипения хладагента и температуры воздуха.
Поэтому жителям Северных регионов, где холода наступают раньше, эта система не подойдет, а в домах Южных областей она сможет эффективно прослужить несколько холодных месяцев.
Если в помещении установлены стандартные батареи, то тепловой насос будет работать менее эффективно. Лучше всего устройство воздух-вода сочетается с конвекторами и иными радиаторами с большой площадью, а также с системами «теплый пол», «теплые стены» водного типа.
Также само помещение должно быть хорошо утеплено снаружи, обладать встроенными многокамерными окнами, обеспечивающими лучшую теплоизоляцию, чем обычные деревянные или пластиковые.
Тепловой насос лучше всего взаимодействует с водяной системой «теплый пол», не требующей нагрева теплоносителя свыше 40 – 45º С
Самодельный тепловой насос сможет эффективно обогревать дома площадью до 100 кв. м и гарантировано выдавать мощность в 5 кВт. Следует понимать, что фреон невозможно залить достаточно качественно в конструкцию, созданную в бытовых условиях, поэтому следует рассчитывать на температуру его кипения до -22 градусов.
Устройство домашней сборки идеально подойдет для снабжения теплом гаража, теплицы, подсобных помещений, небольшого частного бассейна и др. Система обычно используется в качестве дополнительного обогрева.
Электрокотел или иное традиционное оборудование для отопительного сезона потребуется в любом случае. Во время сильных морозов (-15-30 градусов) тепловой насос рекомендуется выключать, чтобы избежать растрат электроэнергии, ведь в этот период его эффективность составляет не больше 10%.
Тепловые насосы поставляют достаточное количество энергии для обогрева воды в крытых частных бассейнах (+)
Принцип действия системы
Рабочее вещество в конструкции – воздух. Через наружный блок, устанавливающийся на улице, кислород по трубам поступает в испаритель, где взаимодействует с хладагентом.
Фреон под действием температуры становится газообразным (поскольку закипает при -55 градусах) и в нагретом виде под давлением поступает в компрессор. Устройство сжимает газ, тем самым увеличивая его температуру.
Горячий фреон поступает в контур накопительного бака (конденсатора), где происходит отдача тепла воде, которую впоследствии можно использовать для организации отопления и ГСВ. В конденсаторе фреон лишается только части своего тепла, и все еще находится в газообразном состоянии.
Проходя через дроссель, хладагент распрыскивается, в результате чего его температура понижается. Фреон становится жидким и в таком виде переходит в испаритель. Цикл повторяется.
На рисунке схематически показана реализация принципа элементарного теплового насоса, разделенного компрессором и расширителем на два контура – высокого и низкого давления
Желающим самостоятельно соорудить тепловой насос из бросовых материалов и отслужившей техники, к примеру, из старого холодильника, поможет информация, изложенная в рекомендуемой нами статье.
Отбор теплоты от горной породы
Скальная порода требует бурения скважины на достаточную глубину (100-200 метров) или нескольких таких скважин. В скважину опускается U-образный груз с двумя пластиковыми трубками, составляющими контур. Трубки заполняются антифризом. По экологическим соображениям это 30 % раствор этилового спирта. Скважина заполняется грунтовыми водами естественным путём, и вода проводит теплоту от камня к теплоносителю. При недостаточной длине скважины или попытке получить от грунта сверхрасчётную мощность, эта вода и даже антифриз могут замёрзнуть, что и ограничивает максимальную тепловую мощность таких систем. Именно температура возвращаемого антифриза и служит одним из показателей для схемы автоматики. Ориентировочно на 1 погонный метр скважины приходится 50-60 Вт тепловой мощности. Таким образом, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной около 170 м. Нецелесообразно бурить глубже 200 метров, дешевле сделать несколько скважин меньшей глубины через 10- 0 метров друг от друга. Даже для сравнительно небольшого дома площадью в 110-120 м2 при небольшом энергопотреблении срок окупаемости 10-15 лет. Почти все имеющиеся на рынке установки работают и летом, при этом теплота (по сути солнечная энергия) отбирается из помещения и рассеивается в породе или грунтовых водах. В скандинавских странах со скальным грунтом гранит выполняет роль массивного радиатора, получающего теплоту летом (днём) и рассеивающего его обратно зимой (ночью). Также теплота постоянно приходит из недр Земли и от грунтовых вод.
Со встроенным ТЭНом
Часто во время производства изготовители дополнительно встраивают в теплонасосы электрические нагреватели. Это позволяет при необходимости переходить на альтернативный для термонасоса источник энергии — электричество.
Это объясняется следующими факторами. Выбор теплонасоса для отопительной системы производится с учетом разных параметров, в частности и особенностями климата конкретного региона. Причем является нецелесообразным монтировать оборудование с избыточной мощностью. Просто экстремальные заморозки случаются редко.
Как показала практика, самым экономным способом «добрать» в эти холодные дни требуемую мощность — это электроэнергия. Это дешевле, чем изначально монтировать насос повышенной мощности. Наличие электрического нагревателя позволяет исключить необходимость устанавливать более мощный насос, чем это необходимо.
Для хозяев грунтовых или водяных теплонасосов установленный ТЭН не является необходимостью. Совершенно по-другому происходит ситуация с воздушным оборудованием. При температуре -17C этот насос будет малопроизводительным. Установка дополнительного теплового генератора в этом случае целесообразна.
Принцип действия геотермального теплонасоса
Тепло у нас под ногами есть в любой среде. Его количество разное в разных регионах, но оно есть повсеместно. И геотермальный тепловой насос отбирает это тепло у природных источников и передает его нагревательному контуру.
Что может стать источником тепла? Любая среда вне помещения, температура которой зимой выше 0oC. Это близлежащий непромерзающий водоем, речка, даже колодец с достаточным количеством воды. Есть тепло и в грунте: ниже точки промерзания температура всегда положительная.
Источником тепла может быть любая среда с температурой выше нуля зимой
Принцип работы геотермального теплового насоса состоит в том, что тепло от источников переносится в установку, где преобразовывается и передается в отопительный контур.
Если говорить чуть подробнее, то все происходит так. В относительно теплой среде находится трубопровод с теплоносителем большой протяженности. Трубопровод чаще всего замкнутый, его движение обеспечивается насосом. Теплоноситель нагревается до температуры среды. Обычно это +5oC или чуть выше. Проходя по первому теплообменнику-испарителю, он отдает тепло находящемуся во втором контуре хладагенту.
Устройство теплового насоса: это три контура с теплоносителями, компрессор и испаритель, сбросный клапан
Хладагент — вещество, которое кипеть начинает при температуре выше -5oC. В большинстве установок используют фреон. До включения установки он находится в жидком состоянии. Потом, по мере поступления тепла от термальных источников, его температура поднимается. Фреон начинает испаряться, переходит в газообразное состояние. Этот газ уже имеет температуру порядка +5oC. Он поступает в компрессор, где его сжимают. При сжатии выделяется большое количество тепла, и из компрессора газ уже выходит с температурой от 35oC до 65oC. Он поступает в еще один теплообменник — конденсатор, где отдает тепловую энергию теплоносителю, который идет в контур отопления.
Сам фреон, отдав большую часть тепла, частично остывает, но все еще находится в газообразном состоянии при повышенном давлении. Он поступает на сбросный клапан, где давление резко падает, он резко охлаждается и сжижается. После чего снова поступает в испаритель, где начинается новый цикл преобразования.
Итоги
Геотермальные насосы — не самая дешевая затея. Если у вас есть возможность подключить газ, и эта затея обойдется вам меньше, чем 15 000 долларов, подключайте газ. Если такой возможности нет или сумма получается больше — целесообразно установить тепловой насос. И лучше геотермальный. Он хоть и требует больших вложений на старте, но работает стабильнее и показывает большую производительность. Сумма вложений — очень приблизительная и зависит от конкретных условий. Но эти устройства тем и отличаются, что проект и расчет геотермального теплового насоса — вещь сугубо индивидуальная и считается под каждый проект. Даже на двух соседних участках условия (и сумма) могут значительно отличаться.