Твердотельное реле схема принципиальная

Схема твердотельного реле постоянного тока своими руками

Для начала разберёмся, что такое твердотельное реле.

Твердотельное реле (сокр. ТТР) – это разновидность управляемых переключателей (реле) без подвижных механических частей.

Виды ТТР

Производители поставляют огромное количество вариантов твердотельных реле в различных конструктивных исполнениях. ТТР можно классифицировать по следующим признакам:

  • По виду тока (для постоянного или переменного, для одно-или трёхфазных цепей);
  • По типам подключаемых нагрузок (с мгновенным срабатыванием, для индуктивных или ёмкостных нагрузок различной мощности и т.п.);
  • По типу корпуса/возможности монтажа (для DIN-реек, для печатных плат, для монтажа на переходных планках);
  • По типу управляющего сигнала (импульсный, постоянный и т.п.);
  • По другим эксплуатационным характеристикам (габариты, диапазоны рабочих температур, влажность и т.д.).

Принцип работы

Управление цепью нагрузки происходит через оптопару. Только она может обеспечить гальваническую развязку без использования механических контактов. По этой причине принимающий элемент всегда реализован на базе полупроводников и имеет следующие блоки:

1.Вход;

2.Триггерная цепь;

3.Развязка;

4.Переключатель (или переключающая цепь);

5.Защита.

Входная цепь получает управляющий сигнал и обеспечивает правильную логику подачи питания на излучающий элемент.

Свет выступает в роли своеобразного ключа.

В зависимости от логики работы реализуется тот или иной алгоритм питания нагрузки.

Преимущества

Самыми очевидными достоинствами ТТР можно назвать:

  • Беззвучная работа (в сравнении с механическими реле).
  • Высокая скорость срабатывания.
  • Небольшие габариты.
  • Большой срок эксплуатации.
  • Наличие гальванической развязки с управляемой цепью.

Недостатки

К сожалению, без них никак:

  • Каждое твердотельное реле рассчитано на определённый тип нагрузки, поэтому готовую модель необходимо подбирать под параметры цепи, а самодельную – правильно проектировать и рассчитывать.
  • Даже при номинальной нагрузке ТТР может сильно греться. Применение радиаторов существенно увеличивает габариты схемы.
  • Как и любой полупроводник, даже в закрытом состоянии ТТР имеет обратный ток и его ВАХ в целом – нелинейная.
  • В зависимости от типа реализации могут присутствовать обязательные требования к соблюдению полярности.

Поэтому цепи в цепях с ТТР необходимо предусматривать системы защиты от КЗ и повышения напряжений / токов, а также от ложных срабатываний (так как чувствительность таких реле очень высока).

Схемы ТТР для постоянного тока

Наиболее популярным в радиотехнике является диапазон напряжений 5-24 В.

Для 5-ти вольтовых схем подойдёт реализация такой схемы на оптопаре. В качестве основы используется MOC3083M как наиболее доступный и практичный элемент.

Её можно использовать, например, в качестве развязки для устройств на базе Arduino (выходной сигнал как раз – 5 В).

Рис. 1. Схема ТТР для постоянного тока на оптопаре

Светодиод LD1 (это АЛ307А) используется для индикации работы ТТР (его можно заменить на простой диод с аналогичными параметрами).

V1 – семистор BT139-800 (на 16А, с изолированным анодом).

D – любой стабилитрон на 3,3 В.

R1 должен иметь теплоотвод минимум 0,5 Вт.

В идеале всю схему желательно разместить на алюминиевой подложке или на радиаторе и полностью залить компаундом (с хорошей теплопроводностью). Не стоит забывать о дополнительной изоляции греющихся полупроводников (в первую очередь семистора), особенно если они имеют открытые аноды.

Доработанный вариант для схем с повышенным напряжением – до 24 В.

Рис. 2. Доработанный вариант для схем с повышенным напряжением

Сила тока допускается в диапазоне 7-14 мА. При превышении необходимо заменить светодиод (АЛ307А рассчитан на эксплуатацию с током до 20 мА).

Классификация твердотельных реле

Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

По количеству подключенных фаз

Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

  • однофазные;
  • трехфазные.

Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

По виду рабочего тока

Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

  • постоянным;
  • переменным.

Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

По конструктивным особенностям

Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

По типу схемы управления

Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

  1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
  2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
  3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

Твердотельные реле различаются и по многим другим, менее значимым, параметрам

Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство

Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

Где используются?

Твердотельные реле — уникальные устройства, которые после монтажа не требуют особого обслуживания. Здесь работает принцип «установил и забыл». К примеру, в простых моделях очистка контактной группы осуществляется с определенной периодичностью — как правило, через определенное число циклов. Если изделие работает редко, это не вызывает проблем.

Но как быть с аппаратурой, для работы которой требуется частое срабатывание — один раз в секунду или даже чаще? Пример такой техники — станок с клапанами соленоидного типа.

Подача напряжения происходит через реле, которому приходится разрывать до десяти ампер индуктивного I. Если поставить контактное устройство, его замену придется осуществляться раз в 1-2 месяца. Если поставить твердотельный аналог, об этом можно забыть на долгие годы.

Несмотря на надежность работы, ТТР требуют периодического осмотра. Базовые рекомендации в этом вопросе дает производитель изделия. Как правило, речь идет о проверке факта замыкания контактов, целостности корпуса и изоляции.

Рекомендации по выбору

В связи с электрическими потерями на силовых полупроводниковых элементах твердотельные реле нагреваются при коммутации нагрузки. Это накладывает ограничение на величину коммутируемого тока. Температура 40 градусов Цельсия не вызывает ухудшения рабочих параметров устройства. Однако нагрев выше 60С сильно снижает допусимую величину коммутируемого тока. Реле в этом случае может перейти в неуправляемый режим работы и выйти из строя.

Поэтому, при длительной работе реле в номинальных, и особенно, «тяжелых» режимах (при длительной коммутации токов свыше 5 А) требуется применение радиаторов. При повышенных нагрузках, например, в случае нагрузки «индуктивного» характера (соленоиды, электромагниты и т.п.), рекомендуется выбирать устройства с большим запасом по току – в 2-4 раза, а в случае управления асинхронным электродвигателем необходим 6-10 кратный запас по току.

При работе с большинством типов нагрузок включение реле сопровождается скачком тока различной длительности и амплитуды, величину которого необходимо учитывать при выборе:

  • чисто активные (нагреватели) нагрузки дают минимально возможные скачки тока, которые практически устраняются при использовании реле с переключением в «0»;
  • лампы накаливания, галогенные лампы при включении пропускают ток в 7…12 раз больше номинального;
  • флуоресцентные лампы в течение первых секунд (до 10 с) дают кратковременные скачки тока, в 5…10 раз превышающие номинальный ток;
  • ртутные лампы дают тройную перегрузку по току в течение первых 3-5 мин.;
  • обмотки электромагнитных реле переменного тока: ток в 3…10 раз больше номинального в течение 1-2 периодов;
  • обмотки соленоидов: ток в 10…20 раз больше номинального в течение 0,05 – 0,1 с;
  • электродвигатели: ток в 5…10 раз больше номинального в течение 0,2 – 0,5 с;
  • высокоиндуктивные нагрузки с насыщающимися сердечниками (трансформаторы на холостом ходу) при включении в фазе нуля напряжения: ток в 20…40 раз больше номинального в течение 0,05 – 0,2 с;
  • емкостные нагрузки при включении в фазе, близкой к 90°: ток в 20…40 раз больше номинального в течение времени от десятков микросекунд до десятков миллисекунд.

Будет интересно Как используется фотореле для уличного освещения?

Способность выдерживать токовые перегрузки характеризуются величиной «ударного тока». Это – амплитуда одиночного импульса заданной длительности (обычно 10 мс). Для реле постоянного тока эта величина обычно в 2 – 3 раза превосходит значение максимально допустимого постоянного тока, для тиристорных реле это соотношение около 10. Для токовых перегрузок произвольной длительности можно исходить из эмпирической зависимости: увеличение длительности перегрузки на порядок ведет к уменьшению допустимой амплитуды тока. Расчет максимальной нагрузки представлен в таблице ниже.

Таблица расчета максимальной нагрузки для твердотелого реле.

Выбор номинального тока для конкретной нагрузки должен заключаться в соотношении между запасом по номинальному току реле и введением дополнительных мер по уменьшению пусковых токов (токоограничивающие резисторы, реакторы и т.д.).

Для повышения устойчивости устройства к импульсным помехам параллельно коммутирующим контактам ставится внешняя цепь, состоящая из последовательно включенных резистора и емкости (RC-цепь). Для более полной защиты от источника перегрузки по напряжению со стороны нагрузки необходимо включить защитные варисторы параллельно каждой фазе твердотельного реле.

Схема подключения твердотельного реле.

При коммутации индуктивной нагрузки использование защитных варисторов обязательно. Выбор необходимого наминала варистора зависит от величины напряжения питающего нагрузку, и расчитывается по формуле: Uваристора = (1,6…1,9)хUнагрузки.

Тип варистора определяется на основе конкретных характеристик работы устройства. Наиболее популярными отечественными варисторами являются серии: СН2-1, СН2-2, ВР-1, ВР-2. Твердотельное реле обеспечивает хорошую гальваническую изоляцию входных и выходных цепей, а также токоведущих цепей от элементов конструкции прибора, поэтому дополнительных мер изоляции цепей не требуется.

Преимущества и недостатки

Твердотельные реле имеют ряд положительных качеств перед электромеханическими аналогами. К ним относятся:

  • Долговечность. Полупроводниковый прибор способен выдержать до десятков тысяч циклов включения и выключения.
  • Создается качественное подключение.
  • Грамотный контроль нагрузки.
  • Высокое быстродействие.
  • Отсутствие электромагнитных помех в замкнутой сети.
  • Быстрое срабатывание.
  • Бесшумность работы.
  • Миниатюрные размеры.
  • Отсутствие дребезгов контактов.
  • Высокая производительность.
  • Возможность плавного перехода между сетями постоянного и переменного тока. Зависит от мощности и типа прибора.
  • Широкая область применения.
  • Выдерживает перегрузки в 2000.
  • Защита от резких и больших скачков напряжения и тока.

Есть и ряд минусов, из-за которых электромеханическое реле может быть выгоднее в применении. В первую очередь это высокая стоимость изделия и сложность его покупки. Приобрести твердотельные реле можно только в профессиональном специализированном магазине электронных компонентов. Сложности возникают и при первичной коммутации – могут появиться высокие скачки тока. Возникающие в процессе работы микротоки также негативно сказываются на реле.

На работу устройства накладываются и эксплуатационные требования – в помещении должен быть нормальный уровень пыли и влажности. Оптимальные значения можно найти в документации к реле.

Возможные схемы подключений

Схемы подключения твердотельных реле могут быть самые разнообразные. Каждая электрическая цепь строится, исходя из особенностей подключаемой нагрузки. В схему могут добавляться дополнительные предохранители, контроллеры и регулирующие устройства.

Благодаря тому, что цепи управления и нагрузки в приборе не перекрываются, их электрические характеристики могут отличаться любыми параметрами (+)

Далее будут представлены наиболее простые и распространенные схемы подключения ТТР:

  • нормально-открытая;
  • со связанным контуром;
  • нормально-закрытая;
  • трехфазная;
  • реверсивная.

Нормально-открытая (разомкнутая) схема – реле, нагрузка в котором находится под напряжением при наличии управляющего сигнала. То есть подключенная техника оказывается в отключенном состоянии при обесточенных входах 3 и 4.

Перед покупкой реле необходимо определиться с требуемым типом его первоначального состояния (замкнутое или разомкнутое), чтобы обеспечить правильную работу подключенной техники (+)

Нормально-замкнутая схема – подразумевается реле, нагрузка в котором находится под напряжением при отсутствии управляющего сигнала. То есть подключенная техника оказывается в рабочем состоянии при обесточенных входах 3 и 4.

Существует схема подключения твердотельного реле, в которой управляющее и нагрузочное напряжение одинаково. Такой способ можно использовать одновременно для работы в сетях постоянного и переменного тока.

Трехфазные реле подключаются несколько по иным принципам. Контакты могут соединяться в вариантах «Звезда», «Треугольник» или «Звезда с нейтралью».

Выбор трехфазной схемы подключения реле во многом зависит от особенностей работы техники, подключенной к нему в качестве нагрузки

Реверсные твердотельные реле применяются в электродвигателях в соответствующем режиме. Они изготавливаются в трехфазном варианте и включают два контура управления.

Если для реле важно соблюдение полярности подключения контактов, то на маркировке всегда будет указано, куда подключать фазу и ноль

Собирать электрические цепи с ТТР необходимо только после их предварительной прорисовки на бумаге, потому что неверно подключенные устройства могут выйти из строя из-за короткого замыкания.

Форма сигнала с произвольным переключением

Хотя это позволяет контролировать фазу сигнала нагрузки, основная проблема случайного включения SSR заключается в том, что начальный скачок тока нагрузки в момент включения реле может быть высоким из-за переключающей мощности SSR, когда напряжение питания составляет близко к своему пиковому значению (90 o ). Когда входной сигнал удаляется, он перестает проводить, когда ток нагрузки падает ниже тока тиристоров или триаков, как показано на рисунке. Очевидно, что для твердотельного реле постоянного тока действие включения-выключения является мгновенным.

Твердотельное реле идеально подходит для широкого диапазона применений ВКЛ / ВЫКЛ переключения , поскольку они не имеют подвижных частей или контактов в отличие от электромеханического реле (ЭМР). Существует много различных коммерческих типов на выбор для входных сигналов управления переменного и постоянного тока, а также для переключения выходов переменного и постоянного тока, так как они используют полупроводниковые переключающие элементы, такие как тиристоры, триаки и транзисторы.

Но используя комбинацию хорошего оптоизолятора и симистора, мы можем сделать наше собственное недорогое и простое твердотельное реле для управления нагрузкой переменного тока, такой как нагреватель, лампа или соленоид. Поскольку для работы оптоизолятора требуется только небольшое количество входной / управляющей мощности, управляющий сигнал может поступать от PIC, Arduino, Raspberry PI или любого другого такого микроконтроллера.

Как сделать ТТР своими руками?

Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.

Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.

Электронные компоненты для сборки схемы

Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:

  1. Оптопара типа МОС3083.
  2. Симистор типа ВТ139-800.
  3. Транзистор серии КТ209.
  4. Резисторы, стабилитрон, светодиод.

Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:

Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.

А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.

Проверка собранной схемы на работоспособность

Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.

Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».

Устройство монолитного корпуса

Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.

Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.

На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.

Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.

Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.

Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.

Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).

Приготовление компаунда и заливка корпуса

Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:

  1. Эпоксидная смола без отвердителя.
  2. Порошок алебастра.

Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.

Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.

Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.

По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.

Выбор твердотельных реле, защита и особенности работы

Обычное реле и контактор без особых проблем выдерживают кратковременные перегрузки до 150 и даже 200% от номинала. Особенно, если не коммутировать нагрузку с таким током, а повышать ток после замыкания, и понижать перед размыканием.

Обычные контакты могут выдержать и кратковременный ток КЗ, если сработает защита с правильной уставкой тока. Просто, возможно, придётся потом контакты почистить.

Твердотельные реле от перегрузок страдают сильнее, за пол периода портятся безвозвратно, и контакты потом не почистить, из-за отсутствия таковых.

Если при выборе контактора достаточно выбрать запас в 10-20% и защитить его обычным автоматом, то с твердотельными устройствами всё сложнее.

Поэтому для твердотельных реле рекомендуется для активной нагрузки (лампы, ТЭНы) запас по номинальному току в 2-4 раза. При пуске асинхронных двигателей из-за большого пускового тока запас по току нужно увеличить до 6-10 раз.

То есть, трехфазная твердотелка Fotek TSR-40AA-H на 40А, показанная на фото чуть выше, на своих 40 амперах работать вряд ли будет. Мощность двигателя, которую можно коммутировать в данном случае – от 2,2 кВт до 5 кВт. Причём двигатель 5 кВт (это около 10А) должен запускаться обязательно на холостом ходу, с минимальным пусковым моментом, а нагрузку к нему прикладывать можно после пуска и разгона.

Кстати, с индуктивной нагрузкой твердотельные реле могут вести себя неадекватно, у меня бывали проблемы. В случае высокоиндуктивных нагрузок (трансформаторы, катушки с магнитопроводами, электрические звонки, и т.п.) нужно параллельно нагрузке включать RC-цепь (снабберную цепь из последовательных резистора и конденсатора) для уменьшения влияния противо-ЭДС. Кроме того, эта цепь уменьшает общую индуктивность нагрузки, т.е. делает её более активной. И ТТР легче работать.

Выводы и полезное видео по теме

Этот ролик показывает, как и на базе каких электронных компонентов можно сделать твердотельное реле. Автор доходчиво рассказывает обо всех деталях практики изготовления, с какими он столкнулся лично в процессе производства электронного коммутатора:

Видео о проблеме, с которой можно столкнуться после приобретения однофазного ТТР у продавцов из Китая. Попутно проводит своеобразный обзор устройства прибора коммутации:

Самостоятельное изготовление твердотельных реле – вполне возможное решение, но применительно к изделиям под низковольтную нагрузку, потребляющую относительно малую мощность.

Более мощные и высоковольтные приборы сделать своими руками сложно. Да и обойдётся эта затея по финансам в такую же сумму, какой оценивается заводской экземпляр. Так что в случае надобности проще купить готовый прибор промышленного изготовления.

Если у вас появились вопросы по сборке твердотельного реле, пожалуйста, задайте их в блоке с комментариями, а мы постараемся дать на них предельно понятный ответ. Там же можно поделиться опытом самостоятельного изготовления реле или сообщить ценную информацию по теме статьи.

Простое твердотельное реле своими руками

Для более надежного и безопасного управления нагрузкой с током 10 А и более рекомендую собрать простое твердотельное реле на тиристорах. У механического реле при коммутации больших токов, со временем контакты покрываются нагаром, в результате чего они выходят из строя, или требуют технического обслуживания. Твердотельное реле на симисторах или тиристорах, в отличии от обычного реле более выносливы к импульсным перегрузкам, надежнее и бесшумные. Ниже представлены две схемы твердотельного реле на тиристорах.

Первая схема, двумя  тиристорами включенными на встречу друг другу управляет реле, благодаря такому включению мы можем использовать данное устройство как силовое реле. Управляющее реле подойдет практический любое, способное выдерживать ток от 100 мА. Резистор R1 выполняет роль ограничителя тока проходящего через реле, его номинал в пределах 300-560 Ом.  Такое твердотельное реле не создает помех в сети.

Вторая схема имеет оптическую развязку от 220 В, за счет применения оптопары. Напряжение управления составляет от 5 до 10 В, тока достаточно в 1 мА. Например если такое твердотельное реле подключить к DTMF декодеру, можно легко получить GSM реле, ребуталку. Спектр его применения очень велик. Тиристоры можно использовать другие, их следует подобрать под нужный вам ток нагрузки, также не забываем про использование радиаторов.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

  • https://fb.ru/article/374516/tverdotelnoe-rele-svoimi-rukami-shema
  • https://sovet-ingenera.com/elektrika/rele/tverdotelnoe-rele-svoimi-rukami.html
  • https://electrongrad.ru/2018/03/03/rele-tiristor/
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Коммуникации
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector