Грунтовый воздушный теплообменник — эффективность, конфигурация, расчет, пример

Грунтовый теплообменник для вентиляции расчет. Введение наверх

Достаточно давно предложена и используется на практике идея предварительного нагрева холодного уличного приточного воздуха перед
подачей его в систему вентиляции загородного дома путем пропускания его по трубам грунтового коллектора. Грунтовый коллектор или
грунтовый теплообменник, обычно из гладких пластиковых труб, монтируется на глубине от 1,5м до 3,0м, где температура грунта в
течение года относительно стабильна. При прохождении холодного уличного воздуха по грунтовому теплообменнику (коллектору) происходит
теплообмен между более тёплым грунтом и воздухом. Температура приточного воздуха по мере движения его к выходу грунтового теплообменника
увеличивается и приближается к температуре грунта на глубине заложения коллектора.

Схематичное устройство и принцип работы грунтового воздушного коллектора.

Таким образом, удается повысить температуру приточного воздуха для системы вентиляции дома без дополнительных затрат энергии, по сравнению с
традиционным нагревом приточного воздуха электричеством или водяным калорифером. Однако, возникает закономерный вопрос:
насколько эффективен данный процесс и какова экономическая целесообразность изготовления, эксплуатации и обслуживания такого грунтового коллектора.

Теоретическую эффективность процесса нагрева приточного воздуха в грунтовом воздушном коллекторе оценить достаточно
просто — исходя из среднемесячных температур уличного воздуха и грунта на глубине заложения коллектора. И эта эффективность
будет максимально возможной, превысить которую не получится, пока веришь во Второе Начало Термодинамики и не используешь «колдовство» в виде
тепловых насосов.

С экономической целесообразностью немного сложнее, ведь всё очень сильно зависит от стоимости грунтового коллектора,
стоимости энергоресурсов, ссудного процента и ожиданий конкретного человека…

Поэтому в этой статье мы постараемся ответить на следующие вопросы (применительно к Минской области):

  1. Какова температура грунта на глубине заложения грунтового коллектора в различные месяцы года (среднегодовая температура грунта на глубине).
  2. Какое максимально возможное (теоретическое) количество тепловой энергии можно передать от грунтового теплообменника к приточному воздуху для
    характерного расхода воздуха для вентиляции в200м³/чв различные месяцы отопительного периода. Для других расходов воздуха полученные
    абсолютные значения энергии изменяются пропорционально.
  3. Какую долю от общей тепловой энергии, требуемой на нагрев приточного воздуха для каждого месяца отопительного сезона, составляет энергия,
    получаемая из грунта при разумном ограничении эффективности теплопередачи в грунтовом коллекторе в 80%. Эта доля теоретически не зависит
    от номинального значения расхода воздуха в системе вентиляции.
  4. Какие важные моменты требуется учитывать при организации нагрева приточного воздуха в грунтовом коллекторе.

Теплообменник своими руками

Теплообменником можно назвать устройство, не имеющее собственного источника нагрева, но позволяющее извлекать тепло из внешних обогревателей. При необходимости можно сделать теплообменник самостоятельно. Однако сначала следует определиться, какой именно вид конструкции вам необходим.

Как сделать теплообменник своими руками?

Наиболее простым в изготовлении является змеевик. Для его устройства лучше всего подойдет медная трубка. Она легко гнется и обладает высокой теплоотдачей. Возьмите необходимый отрезок трубки и аккуратно согните ее в спираль, поместите ее в бак или бочку. Затем выведите концы наружу и закрепите. К окончаниям трубки при помощи обжимных соединений присоедините резьбовой фитинг. В результате у вас получится теплообменник – змеевик. В качестве альтернативы медной трубки можно использовать и другие легкогнущиеся трубки. Это может быть металлопласт или алюминий.

Другой разновидностью теплообменника является так называемая водяная рубашка. Наибольшее распространение такой вид теплообменников имеет в небольших котлах систем отопления и представляет собой герметичную емкость, установленную внутри котла и позволяющую нагревать воду от циркулирующей жидкости в системе отопления дома. Недостатком такого вида теплообменника является невысокая пропускная способность и зависимость от температуры в системе.

Более сложным для самостоятельного изготовления, но и более эффективным теплообменником является конструкция под названием трубная доска. Для самостоятельного изготовления потребуется несколько вальцовочных соединений. Состоит такой тип теплообменника из трех и более герметичных емкостей, соединенных трубами. Находящиеся по разным концам емкости соединены развальцованными на концах трубами. Циркуляция жидкости межу ними дает необходимый теплообмен в средней части конструкции.

Если желание сделать теплообменник самостоятельно, не делая больших затрат, в качестве основного материала можно использовать автомобильные радиаторы, радиаторы отопления или газовые колонки.

Особое внимание на устройство теплообменника стоит обратить владельцам дач или небольших коттеджей, находящихся за городом и не имеющих возможности пользования природным газом. Устройство небольшой каменной печи снабженной теплообменником, позволит наслаждаться теплом и уютом во всех помещениях. Для этого потребуется вмонтировать в печь две емкости, соединенные между собой несколькими трубами

Одна емкость должна быть прямоугольной и располагаться в низу, а другая цилиндрической, наверху. Для необходимой циркуляции трубы системы отопления требуется закольцевать в закрытый контур, чтобы выход горячей воды был из верхней цилиндрической емкости, а вход остывшей в нижний прямоугольный. Подчиняясь неизбежным законам физики, горячая вода будет подниматься вверх, обеспечивая необходимую циркуляцию жидкости по всем помещениям. При такой конструкции необходимо в верхней точке контура установить расширительный бачек, с помощью которого будет поддерживаться уровень жидкости в системе, и устраняться воздушные пробки. Стоит заметить, что принцип теплообмена может служить не только для нагрева, но и для охлаждения жидкости

Для этого потребуется вмонтировать в печь две емкости, соединенные между собой несколькими трубами. Одна емкость должна быть прямоугольной и располагаться в низу, а другая цилиндрической, наверху. Для необходимой циркуляции трубы системы отопления требуется закольцевать в закрытый контур, чтобы выход горячей воды был из верхней цилиндрической емкости, а вход остывшей в нижний прямоугольный. Подчиняясь неизбежным законам физики, горячая вода будет подниматься вверх, обеспечивая необходимую циркуляцию жидкости по всем помещениям. При такой конструкции необходимо в верхней точке контура установить расширительный бачек, с помощью которого будет поддерживаться уровень жидкости в системе, и устраняться воздушные пробки. Стоит заметить, что принцип теплообмена может служить не только для нагрева, но и для охлаждения жидкости.

Подбор материала

Следует сразу отметить, что в домашних условиях создать теплообменник как на заводе практически невозможно. Вместе с тем, самодельная конструкция по функционалу не будет уступать созданной на предприятии.

Можно придать любую форму конструкции, но наиболее популярными вариантами является система, выполненная из нескольких металлических труб в виде решетки или пластин

В связи с тем, что температура горения достаточно высокая, тем более когда в качестве топлива используется уголь, следует особое внимание уделить выбору материала, а также уровню качества швов сварки. Кроме того, важную роль имеет тип металла, поскольку у каждого своя теплопроводность

Если взять медную трубу, то она в 7 раз будет превышать коэффициент теплопроводности, чем аналогичная труба, изготовленная из стали. При идентичном диаметре и объеме передаваемого тепла достаточно 3,5 метра медной трубы, при этих же параметрах стальной понадобится 27 метров.

Нагревательные элементы из меди самые дорогие, но эффективные. Если нет возможности потратиться на приобретение таких материалов, можно приобрести стальные трубы, но при этом их диаметр должен быть не менее 3,5 сантиметров.

Эффективность

Использование грунтово-воздушных теплообменников как для частичного, так и для полного охлаждения и/или нагревания воздуха, вентилируемого в помещении, проходило с переменным успехом. К сожалению, литература переполнена чрезмерными обобщениями о «плюсах» и «минусах» применимости этих систем. Ключевым аспектом грунтово-воздушных теплообменников является пассивная природа работы и возможность применения в широком спектре природных условий.

Грунтово-воздушные теплообменники могут быть крайне рентабельными как в отношении предварительных, так и капитальных затрат, а также долговечными и дешевыми в обслуживании. Однако это сильно зависит от широты местности, высоты над уровнем моря, температуры окружающей среды, максимумов климатической температуры и относительной влажности, солнечной радиации, уровня воды, типа почвы (теплопроводности), содержания влажности в почве и внешнего проектирования системы или ее изоляции. В основном сухая почва с низкой плотностью, малым количеством или полностью отсутствующим слоем грунта может принести меньше всего выгод, хотя плотная влажная почва со значительным слоем грунта должно улучшить характеристики системы.

Система замедленного дренажа конденсата может улучшить тепловые характеристики. Влажная почва в контакте с охлаждающими трубами будет проводить тепло гораздо эффективнее, чем сухая почва.

Подземные охлаждающие трубы гораздо менее эффективны в жарком влажном климате (как во Флориде), где температура окружающей среды приближается к комфортной для людей температуре. Чем выше температура окружающей среды, тем менее эффективна система для охлаждения и осушения воздуха. Однако, почва может использоваться для частичного охлаждения и осушения заменяемого воздуха, поступающего в термическую буферную зону с пассивной солнечной подпиткой, например, в прачечной или террасе/теплице, особенно – в тех зонах, где есть купель, плавательная спа-зона или внутренний плавательный бассейн, где теплый влажный воздух извлекается летом, и требуется более холодный и сухой компенсационный воздух.

Не для всех регионов и мест пригодны грунтово-воздушные теплообменники. Среди условий, которые могут препятствовать правильному использованию систем – поверхностная скальная порода, высокий уровень воды и неподходящее пространство. В частности, в некоторых районах должна быть обеспечена тепловая перезарядка почвы. В бифункциональных системах (как нагревания, так и охлаждения) теплое время года обеспечивает тепловую перезарядку почвы для холодного сезона, а холодный сезон обеспечивает тепловую перезарядку почвы для теплого сезона, хотя даже для них стоит предусматривать вариант перегрузки теплового резервуара.

«Renata Limited» — выдающаяся фармацевтическая компания в Бангладеш проверила пилотный проект, пытающийся обнаружить, можно ли использовать туннельный грунтово-воздушный теплообменник в качестве дополнения к традиционной системе кондиционирования воздуха. Бетонные трубы с общей длиной в 60 футов (около 18,25 м), внутренним диаметром в 9 дюймов (около 23 см) и внешним диаметром в 11 дюймов (около 28 см) были закопаны на глубине в 9 футов (около 2,75 м) под землей, использовался вентилятор с расчетной мощностью 1,5 кВт.

Подземная температура на глубине оставалась на уровне в 28 C. Средняя скорость движения воздуха в туннеле составляла около 5 м/с. КПД подземного теплообменника, созданного таким образом, было малым и составляло от 1,5 до 3 ед. Результаты убедили власти, что в жарком и влажном климате неблагоразумно воплощать на практике концепт грунтово-воздушного теплообменника. Вторичный холодоноситель (сам грунт) изменяет температуру окружающей среды, что является главной причиной провала подобных принципов в жарких, влажных регионах (части Юго-Восточной Азии, американский штат Флорида и так далее).

Однако исследователи из Британии и Турции докладывали о чрезвычайно высоком КПД, превышающем 20 единиц. Температура под землей кажется самым важным показателем для проектирования грунтово-воздушного теплообменника.

Гравийный грунтовый теплообменник без труб

Существует вариант устройства грунтового теплообменника без применения труб. Вместо труб в траншею на горизонтальном участке насыпают слой щебня или гравия крупной фракции толщиной не менее 800 мм.

Гравийный теплообменник рекомендуется размещать на участке рядом с домом, что уменьшит длину и аэродинамическое сопротивление труб, соединяющих его с домом. Кроме того, гравийный теплообменник максимально удаляют от очистных устройств местной канализации. Уровень грунтовых вод должен быть ниже дна теплообменника.

Для устройства гравийного теплообменника роют котлован размером, позволяющим разместить в нем гравийную засыпку объемом 9 — 13 м 3 . Рекомендуемая толщина слоя засыпки гравия в котловане 0,9 — 2 м.

Дно и стенки котлована покрывают геотекстилем для предотвращения заиливания грунтом. Котлован заполняют гравием или щебнем фракции 20 мм. Перед укладкой материал засыпки тщательно промывают для удаления песка и других загрязнений. Засыпку накрывают сверху полотном геотекстиля, что предотвращает смешивание гравия с лежащим выше грунтом.

Ввод в дом и воздухозаборник выполняют как обычно, из труб диаметром 200 — 250 мм. Горизонтальные участки труб укладывают с уклоном 1-2% в сторону засыпки для стока воды. На концах подводящих труб в слое засыпки рекомендуется сделать гребенку из труб диаметром 150 мм для более равномерного распределения воздуха в слое как по вертикали, так и по горизонтали. Трубы гребенки располагают с шагом 600 — 800 мм.

  • Гравийному теплообменнику не нужны устройства для отвода конденсата.
  • Меньше стоимость сооружения.
  • Имеет более высокое аэродинамическое сопротивление.
  • Увлажняет поступающий в дом воздух.
  • Не защищен от попадания в нагнетаемый в дом воздух почвенных газов.

Гравийный теплообменник бывает выгодно соорудить на небольшой глубине в 0,5-0,6 м., в слое, где грунт зимой промерзает. Грунт над теплообменником в этом случае защищают от промерзания, утепляя его слоем теплоизоляции. Для утепления используют плиты из экструдированного пенополистирола (XPS) марки 35. Толщину и ширину слоя утеплителя определяют расчетом.

Гравийный теплообменник не следует применять в районах интенсивного выделения из недр земли радиоактивного почвенного газа радона.

Эксплуатация грунтового теплообменника

Наиболее эффективная работа грунтового теплообменника обеспечивается при его эксплуатации с перерывами на восстановление. Если воздух через теплообменник пропускать непрерывно, то температура почвы будет постепенно уравниваться с температурой воздуха, а эффективность теплообменника падать. Через каждые 10 — 20 часов работы грунтовый теплообменник необходимо отключать для восстановления на такой же период времени. Для этого лучше всего использовать время, когда все уходят из дома. На это время забор воздуха переключают на байпас помимо теплообменника.

Переключение клапанов — заслонок, меняющих режим работы теплообменника в зависимости от температуры наружного воздуха и перерывов на восстановление, должно выполняться автоматикой. При ручном управлении хозяева обычно забывают это делать.

Для того, чтобы грунтовый теплообменник работал непрерывно, без перерывов на восстановление, рекомендуется делать два теплообменника — прокладывать две трубы. Пока один теплообменник отключен для восстановления, работает другой, и наоборот.

При переключении забора воздуха через грунтовый теплообменник, аэродинамическое сопротивление притока на входе в блок принудительной вентиляции заметно увеличивается. Вентилятор притока в блоке вентиляции на это часто не рассчитан и не может обеспечить необходимый приток воздуха в помещения. Необходимо выбирать блок принудительной вентиляции, рассчитанный на работу с грунтовым теплообменником. Или придется устанавливать дополнительный вентилятор на выходе воздуха из трубы грунтового теплообменника.

Еще статьи на эту тему:

Выберите тип вентиляции для своего дома

Какую вентиляцию выбрали Вы? Голосуйте! Узнайте, что выбрали другие.

Многие домовладельцы задумываются об уменьшении затрат на подогрев и охлаждение воздуха в своих домах. В последнее время набирает популярность теплообменник в грунте, который можно сделать своими руками, ориентируясь на фотопримеры конструкции. Рассмотрим принцип работы, эффективность и самостоятельное изготовление такого устройства, посредством которого перед поступлением в систему вентиляции будет подогреваться воздух.

Системы приточной вентиляции

Системы вентиляции бытовых помещений могут иметь различную комплектацию и стоимость от нескольких сотен до десятка тысяч долларов. Самые простые и недорогие из них:

  • Оконный клапан, устанавливаемый в верхней части рамы пластикового окна и позволяющий свежему воздуху естественным путем попадать в помещение.
  • Приточный вентилятор, который монтируется в окне или отверстии в наружной стене. В нашей климатической зоне такие вентиляторы в жилых помещениях практически не используется.

Недостаток подобных простейших систем заключается в том, что зимой в помещение будет поступать слишком холодный воздух, что может привести к заболеванию людей, отклеиванию обоев, рассыханию мебели и паркета. Чтобы этого не происходило, в жилые помещения должен подаваться воздух с температурой не ниже +18°C (это, кстати, требование СНиП), поэтому в вентиляционной системе обязательно доложен присутствовать калорифер с системой автоматики, которая регулирует его мощность и защищает от перегрева. Кроме этого, вентиляционная система должна иметь легкосъемный воздушный фильтр (иначе в дом вместе со свежим воздухом будет попадать большое количество пыли) и хорошую шумоизоляцию. Этим требованиям отвечают наборные системы вентиляции, собираемые как конструктор из отдельных компонентов: вентилятора, шумоглушителя, фильтра, калорифера и системы автоматики. Однако наборные системы занимают много места (обычно для их размещения необходимо отдельное помещение — венткамера) и требуют квалифицированного проектирования, монтажа и пуско-наладки. Именно поэтому для вентиляции загородных домов, квартир и небольших офисных помещений чаще используют моноблочные приточные установки.

Приточная установка (ПУ) — это компактная система вентиляции, все компоненты которой собраны в одном шумоизолированном корпусе (моноблоке). Благодаря такой конструкции моноблочные приточные установки избавились от многих недостатков, свойственных наборным системам. Небольшие размеры и низкий уровень шума позволили размещать их на балконах или даже непосредственно в жилых помещениях, а подбор и настройка всех компонентов на этапе производства сделали ненужными сложное проектирование и пуско-наладку.

Далее мы расскажем о том, какие они бывают, а также о том, как правильно выбрать приточную установку для квартиры, загородного дома или офисного помещения.

Грунтовый теплообменник — что это такое и как используется?

Грунтовый теплообменник – теплообменник подземного типа, способный улавливать тепло из грунта и/или рассеивать его там. Они используют практически неизменную подземную температуру планеты для нагревания или охлаждения воздуха или других текучих сред с целью применения в жилом, аграрном или промышленном секторе.

Если воздух в здании проходит через теплообменники с целью теплоутилизации, в Европе их называют подземными трубопроводами (они же – нагревательные и охладительные подземные трубопроводы), а в Северной Америке – грунтово-воздушными теплообменниками (ГВТ). Эти системы известны под рядом других названий, среди которых – воздушно-почвенный теплообменник, грунтовые каналы, грунтовые канавы, грунтово-воздушные туннельные системы, подземный трубчатый теплообменник, гипокаусты, грунтовые теплообменники, тепловые лабиринты, подземные вентиляционные трубы и так далее.

Подземные трубопроводы зачастую выступают практически осуществимой и экономичной альтернативой или дополнением к стандартным системам центрального отопления или воздушного кондиционирования, так как у них отсутствуют компрессоры, химикаты и горелки, а для движения воздуха требуются только вентиляторы. Они используются как для частичного, так и для полного охлаждения и/или нагревания воздуха, подающегося в здание через вентиляторы.

Их применение может помочь зданиям соответствовать стандартам Пассивного дома или сертификации Руководства по энергоэффективному и экологическому проектированию.

Грунтово-воздушные теплообменники использовались на аграрных (животноводческих постройках) и садоводческих предприятиях (теплицах) в США последние несколько десятилетий, а вместе с солнечной вытяжной трубой в жарких сухих регионах – в течение тысячелетий, начиная, вероятно, со времен Персидской империи. Разработка этих систем в Австрии, Дании, Германии и Индии стало достаточно распространенной, начиная с середины 1990-х, и постепенно принимается в Северной Америке.

Грунтовый теплообменник также может использовать воду или антифриз в качестве теплообменной среды, часто – вместе с геотермальным тепловым насосом.

Расчет эффективности вентиляции с применением ГТО и рекуперации тепла

Для получения комфортного свежего воздуха, его необходимо нагревать в зимний период и в межсезонье, а в летний период охлаждать. Ниже приведен пример расчета затрат тепловой энергии на подогрев приточного воздуха без применения систем утилизации тепла, а также при применении геотермальных систем для умеренного Европейского климата. Расход воздуха принят 300 м 3 /час.

Итого суммарно за весь год на нагрев или охлаждение свежего воздуха необходимо будет затратить:

ЗИМА

В зимний период среднесуточная температура на протяжении 80 дней составляет -5°С. Для доведения ее до комфортной, необходимо нагревать до +20°С. Таким образом:

  • При отсутствии системы утилизации тепла на нагрев 300 м³/час на Δt=25°С необходимо затратить: Р(Wt) = L(m³/h) x 0.34 x ?t(ºС) = 300 м³/час х 0,34 х 25/1000 = 2,550 кВт.
  • При использовании геотермальной системы происходит подогрев наружного воздуха до +5°С, при этом воздуху передается: Р(Wt) = L(m³/h) x 0.34 x ?t(ºС) = 300 м³/час х 0,34 х 10/1000 = 1,02 кВт.
  • При последующем использовании приточно-вытяжной установки с рекуперацией тепла ВУТ, воздух подогревается до +12°С: Р(Wt) = L(m³/h) x 0.34 x ?t(ºС) = 300 м³/час х 0,34 х 7/1000 = 0,714 кВт.

Если принять 50% времени работы системы вентиляции с полной производительностью, с учетом того, что приточно-вытяжной агрегат работает на разных производительностях в разный период времени, то за период 80 дней:

  • При отсутствии системы утилизации тепла будет затрачено: 80 дн x 24ч x 0.5 x 2,55кВт = 2 448 кВт*ч.
  • При использовании геотермальной системы (эффективность системы возрастает с уменьшением расхода воздуха) необходимая тепловая мощность уменьшится на: 80 дн x 24ч x 0.6 x 1,02кВт = 1175 кВт*ч.
  • При последующем использовании приточно-вытяжной установки с рекуперацией тепла ВУТ необходимая тепловая мощность уменьшится на: 80 дн x 24ч x 0.5 x 0,714кВт = 685 кВт*ч.

ВЕСНА/ОСЕНЬ

В межсезонье на протяжении 180 дней среднесуточная температура составляет +5°С. Для доведения ее до комфортной, необходимо нагревать до +20°С. Таким образом:

  • При отсутствии системы утилизации тепла на нагрев 300 м3/час на Δt=15°С необходимо затратить: Р(Wt) = L(m³/h) x 0.34 x ?t(ºС) = 300 м³/час х 0,34 х 15/1000 = 1,53 кВт.
  • При использовании геотермальной системы происходит подогрев наружного воздуха до +10°С, при этом воздуху передается: Р(Wt) = L(m³/h) x 0.34 x ?t(ºС) = 300 м³/час х 0,34 х 5/1000 = 0,51 кВт.
  • При последующем использовании приточно-вытяжной установки с рекуперацией тепла ВУТ, воздух подогревается до +15°С: Р(Wt) = L(m³/h) x 0.34 x ?t(ºС) = 300 м³/час х 0,34 х 5/1000 = 0,51 кВт.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Коммуникации
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector