Проверка конденсаторов различного типа мультиметром и без него

Проверяем конденсатор мультиметром в режиме омметра

Для примера мы свами выполним проверку четырех конденсаторов: два полярных (диэлектрических) и два неполярных (керамических).

Но перед проверкой мы должны обязательно разрядить конденсатор, при этом достаточно замкнуть его контакты  при помощи любого металла.

Для того чтобы перейти в режим (омметра) сопротивления, мы перемещаем переключатель в группу измерения сопротивления, для того чтобы установить наличие обрыва или короткого замыкания.

Итак, первым делом проверим полярные кондиционеры (5.6 мкФ и 3.3 мкФ), установленных ранее у неработающих энергосберегающих лампочек

Разряжаем конденсаторы путем замыкания их контактов обычной отверткой. Вы можете использовать, удобный для вас, любой другой металлический предмет. Главное чтобы к нему плотно прилегали контакты. Это позволит нам получить точные показания прибора.

Следующим шагом выставляем переключатель на шкалу 2 МОм и соединяем контакты конденсатора и щупы прибора. Далее наблюдаем на дисплее быстро увиливающие параметры сопротивления.

Вы спросите меня, в чем дело и почему на дисплее мы наблюдаем «плавающие показатели» сопротивления? Это объяснить довольно просто, поскольку питание прибора (батарейка) имеет постоянное напряжение и за счет этого происходит зарядка конденсатора.

С течением времени конденсатор все больше и больше накапливает заряд (заряжается), тем самым увеличивая сопротивление. Емкость конденсатора влияет на скорость зарядки. Как только конденсатор получит полную зарядку, значение его сопротивления будет соответствовать значению бесконечности, а мультиметр на дисплее покажет «1». Это параметры рабочего конденсатора.

Нет возможности показать картинку на фотографии. Так для следующего экземпляра емкостью 5.6 мкФ,  показатели сопротивления начинаются с 200 кОм и плавно возрастают до тех пор, пока не преодолеют показатель 2 МОм. Эта процедура не занимает более -10 сек.

Для следующего конденсатора емкостью 3.3 мкФ происходит все аналогично, но время процесса занимает менее — 5 сек.

Проверить следующую пару неполярных конденсаторов можно точно также по аналогии с предыдущими конденсаторами. Соединяем щупы прибора и контакты, следим за состоянием сопротивления на дисплее прибора.

Рассмотрим первый «150nК». Вначале его сопротивление несколько снизится примерно до 900 кОм, затем следует его плавное увеличение до определенной отметки. Время процесса занимает — 30 сек.

При этом на мультиметре модели МБГО переключатель устанавливаем на шкалу 20 МОм (сопротивление приличное, очень быстро идет зарядка)

Процедура классическая, снимаем заряд при помощи замыкания контактов отверткой:

Смотрим на дисплей, отслеживая показатели сопротивления:

Делаем вывод, что в результате проверки все представленные конденсаторы исправны.

Алгоритм диагностики мультиметром

Тестирование конденсаторов рекомендуется проводить после их изъятия из электроцепи. Таким образом достигаются более верные показатели.

Центральным показателем конденсаторов является способность пропускать только ток переменного характера. Постоянный же ток он способен пропускать лишь небольшой промежуток времени и исключительно в начале процесса. Сопротивление здесь напрямую зависит от ёмкости.

Как произвести тестирование полярного конденсатора

Для диагностики элемента мультиметром, потребуется обеспечить ёмкость, которая не будет превышать показатель равный 0,25 мкФ.

Алгоритм проверки неисправностей конденсатора при помощи мультиметра следующий:

  1. Потребуется взять электрический компонент за ножки и закоротить его каким-то предметом из металла, например, это может быть пинцет или отвёртка. Это надлежит сделать для разрядки элемента. Искры, которые появятся при этом, дадут знать, что разряд произошел.
  2. Затем надлежит установить переключатель мультиметра в режим замера данных сопротивления или на прозвонку.
  3. Далее следует прикоснуться щупами к выводам конденсатора, при этом следует учитывать их полярность, то есть к минусовой ножке подвести щуп чёрного цвета, а к плюсовой — красного. При этом происходит выработка постоянного тока, поэтому через определённый отрезок времени можно ожидать минимальное сопротивление электрического компонента.

В то время, когда щупы располагаются на вводах конденсатора, происходит его подзарядка. Продолжает повышаться сопротивление пока не достигнет максимального уровня.

Если при соединении со щупами прибор начинает пищать, а стрелка его склоняет к нулевой отметке, то это говорит о наличии короткого замыкания. Оно и вывело из строя работу конденсатора. При указании стрелки на единицу, можно предположить, что в конденсаторе произошёл внутренний обрыв. Подобные элементы можно признать испорченными и заменить. Если на приборе, спустя некоторое время, единица высвечивается, то деталь в порядке.

Важно сделать измерения таким образом, чтобы на их качество не повлияло неправильное поведение. Запрещается в продолжении диагностики прикасаться руками к щупам. Человеческое тело имеет небольшой показатель сопротивления, поэтому соответствующие данные утечки будут превышать его многократно

Человеческое тело имеет небольшой показатель сопротивления, поэтому соответствующие данные утечки будут превышать его многократно.

Ток последует по пути наименьшего сопротивления и обойдёт конденсатор. Таким образом мультиметр представит ложный результат измерений. Можно разрядить электрический компонент благодаря лампе накаливания. В подобном случае процесс станет идти более плавным образом.

Разрядку необходимо производить в обязательном порядке, тем паче, если элемент является высоковольтным. Это делают из-за соблюдения норм безопасности, а также, чтобы сам прибор остался в рабочем состоянии. Его способно привести в негодность остаточное напряжение.

Неполярный конденсатор и его диагностика

Такого рода элементы проверить с помощью мультиметра ещё легче. Вначале на самом приборе проставляют предельный показатель измерения на мегаомы. Затем прикладывают щупы. Если данные на приборе будут менее 2 Мом, то это показатель неисправности конденсатора.

В период подзарядки элемента с помощью мультиметра можно продиагностировать его работоспособность, когда ёмкость колеблется от 0,5 мкФ. Если показатель меньше, то измерения будут незаметны на приборе. Когда требуется протестировать элемент менее 0,5 мкФ на мультиметре, то это можно сделать, если будет короткое замыкание между обкладками.

При исследовании неполярного конденсатора, у которого напряжение выше 400 В, то это возможно выполнить при зарядке его от источника, ограждённого от к.з. автоматическим выключателем. По порядку с конденсатором соединяют резистор, сопротивление его должно быть предусмотрено свыше 100 Ом., что ограничит мощность первичного токового броска.

Возможно определить работоспособность конденсатора и другим способом, например, протестировав его на искру. Заряжают электрический компонент до рабочей ёмкости, а потом выводы закорачивают при помощи металлической отвёртки, у которой имеется изолированная ручка. По мощности разряда делают вывод о работоспособности компонента.

До зарядки, а также через время после неё, следует измерить на ножках детали показатели напряжения. Существенным является способность заряда продолжительное время сохраняться. Затем потребуется разрядка конденсатора с помощью резистора, благодаря которому он и производил зарядку.

Обозначения на конденсаторах

От размеров элемента зависит количество данных, характеризующих его параметры. На корпус элемента наносятся обязательные электрические характеристики:

  • ёмкость конденсатора, С;
  • максимальное напряжение, на которое рассчитан элемент, В.

Маркировка конденсаторов

На очень мелких деталях может быть отмечена только ёмкость, по стандарту EIA. Если нарисованы только цифры и буква, то цифры обозначают ёмкость, буквы могут иметь расшифровку, применимую к типу конструкции. При наличии трёх цифр первые две – это ёмкость. Третья цифра, лежащая в пределах 0-6, – это множитель нуля (505 – 55*100000). Когда третья цифра 8, значение умножают на 0,01, если 9 – на 0,1.

К сведению. Буква, обозначающая ёмкость, может стоять как после числового значения, так перед ним и между цифрами. Например, Н15; 1Н5; 15Н. Таким образом, может обозначаться десятичный разряд числа – 0,15нФ; 1,5нФ; 15нФ.

Дополнительно могут быть обозначены значения:

  • тип – конструктивное исполнение;
  • вид тока – постоянный, переменный, AC – DC;
  • рабочая частота, Гц;
  • величина допустимых отклонений ёмкости, %;
  • полярность выводов у электролитических конденсаторов, « + » и « – ».

Обозначения на корпусе электролитического конденсатора

Вычисление с помощью формул

Вычисление номинальной емкости элемента требуется в 2 случаях:

  1. Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
  2. Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.

RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.

Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.

Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.

Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.

Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.

Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.

Вычисление с помощью формул

Вычисление номинальной емкости элемента требуется в 2 случаях:

  1. Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
  2. Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.

RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.

Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.

Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.

Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.

Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.

Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.

Проверка мультиметром

Наиболее простым, и в то же время доступным способом тестирования является проверка мультиметром. Этот прибор способен измерять различные электротехнические величины, от сопротивления до напряжения и частоты. В частности, он может измерить и емкость конденсатора. Проверка емкости не происходит мгновенно. Тестеру нужно время для того, чтобы зарядить элемент до определенного уровня напряжения, а потом разрядить его. По величине тока разряда и времени производится заключение о емкости.

Измерение емкости

Перед установкой любых элементов в аппаратуру при ремонте или проектировании требуется протестировать их исправность и соответствие заданным параметрам. Поэтому необходимо знать, как проверить емкость конденсатора мультиметром. Нужно выполнить несколько простых действий:

  1. Установить измерительные щупы мультиметра в подходящие отверстия на его корпусе. Черный щуп — в отверстие с маркировкой COM, а красный — в гнездо с надписью Ом, Hz, U.
  2. Выбрать режим проверки конденсаторов ручкой на лицевой панели прибора. Обычно этот режим обозначен условным значком электроконденсатора — двумя параллельными линиями с выводами.
  3. Прикоснуться щупами мультиметра к выводам элемента. При этом на экране тестера должно отобразиться значение его емкости в микрофарадах. Обычно измерительный прибор показывает, в каких величинах производится измерение, либо эти данные есть на его измерительной шкале.
  4. Если полученное значение отличается от номинального более чем на допуск, указанный в описании этого типа электроконденсаторов (может быть от 0,5 до 80%), значит, элемент не должен применяться по назначению.

Знать, как измерить емкость конденсатора мультиметром, необходимо также и при проверке электроприбора на ошибки в работе. Любой электротехнический прибор может начать работать нестабильно, и причиной этого может служить выход из строя одного или нескольких элементов. Если провести измерение емкости используемых в приборе конденсаторов, можно выявить и устранить причину неисправности.

Тест сопротивления

Узнать, произошёл ли пробой элемента, также можно, измерив его сопротивление. Некоторые измерительные приборы не имеют возможности проверять емкость электроконденсаторов. Но такими измерителями все равно можно протестировать аппаратуру, если замерить величину сопротивления между обкладками используемых в ней конденсаторов.

Для этого нужно выполнить все действия, описанные для проверки емкости, но режим измерения нужно выбрать другой — проверку сопротивления. Этот режим обычно обозначен диапазоном измерения в Омах. Для проверки конденсаторов лучше выбрать диапазон, равный 200 Ом. Если при прозвонке элемента выявлено сопротивление ниже 50 Ом, такой элемент подвергся пробою и не может быть использован.

Прозвонить элемент можно также и внутри схемы, непосредственно в аппаратуре. Однако проверка конденсатора мультиметром, не выпаивая ни одну из его ножек, приводит к ошибкам измерения, так как тестируется также и вся остальная схема, находящаяся между измерительными щупами. Поэтому для измерения нужно выпаять хотя бы один из выводов элемента.

Знать, как проверить конденсатор мультиметром, не выпаивая, необходимо при кропотливой проверке электротехнических приборов на возможную неисправность, если точно известно, что неисправность заключается в одном из элементов. При этом следует выпаять одну из ножек каждого элемента и поочередно померить их сопротивление и емкость. Таким образом можно выявить вышедшие из строя элементы.

Originally posted 2018-07-04 07:13:27.

Как проверить электролитический конденсатор мультиметром

  • Настраиваем прибор на режим измерения сопротивления до 100 Ком.
  • Дотрагиваемся до контактных выводов этого кондера измерительными проводами мультиметра, при это необходимо строго соблюдать полярность.
  • Внимательно контролируем изменение показаний на шкале измерительного прибора.

Оцениваем результат измерения:

  • Если сопротивление начинает расти (происходит заряд) и достигает большого значения, а затем медленно начинает уменьшаться (он разряжается) — элемент исправен.
  • Если сопротивление на шкале мультиметра увеличивается, но нет обратного движения показаний (происходит заряд, но нет разряда) – проводящая пластина находится на обрыве. Такой элемент подлежит замене.
  • Если сопротивление остаётся малым (не происходит заряд измеряемого элемента) – электролит находится в состоянии короткого замыкания. Его необходимо заменить.

Обязательно нужно разряжать электролит перед его проверкой, чтобы не попасть под напряжение. Разрядить его легко, коснувшись одновременно двух контактов электролита любой отвёрткой с изолированной рукояткой.

Как проверить конденсатор мультиметром пошаговая инструкция

На исправность конденсаторы проверить легко. У меня мультиметр модели Mastech MS8260G, у него есть функция измерения емкости конденсаторов. Правда не всех, у этого прибора ограниченный диапазон измерения емкости. Но некоторые конденсаторы он меряет. Если у Вас есть такой мультиметр, то по маркировке определите его емкость и промеряйте далее конденсатор мультиметром.

Если мультиметр показывает емкость такую же (или с отклонением не более 30 %) от той, какая указана на корпусе, то он исправен. Если проверяете полярный электролитический конденсатор, то при измерении нужно соблюдать полярность.

При проверке конденсаторов в высоковольтных устройствах (блоках питания) соблюдайте осторожность. Измерять нужно только полностью разряженный конденсатор. Разрядить его можно замкнув его контакты отверткой, а в отдельных случаях через резистор, чтобы исключить образование искры

Впаивать конденсатор так же нужно полностью разряженным

Разрядить его можно замкнув его контакты отверткой, а в отдельных случаях через резистор, чтобы исключить образование искры. Впаивать конденсатор так же нужно полностью разряженным.

Если у Вас стрелочный прибор, то проверяем конденсатор так. Переключаем прибор в режим измерения сопротивления. Подсоединив контакты конденсатора к мультиметру, смотрим на поведение стрелки прибора. Желательно под рукой иметь заведомо исправный конденсатор такой же емкости в качестве эталона .Сравнивая поведение стрелки с эталоном получаем результат:

Еще хотелось бы сказать пару слов о другом замечательном приборе, который идеально подходит для определения исправности большинства конденсаторов. Этот прибор является по сути определителем элементов. Это особенно актуально в наше время, когда по внешнему виду уже бывает трудно определить что за деталь в руках.

Прибор этот недорог, но определяет емкости конденсаторов, их ESR, исправность диодов, транзисторов, катушек, тиристоров, стабилизаторов. И резисторов. Множества резисторов. Есть у этого прибора и площадка для проверки SMD элементов.

Работает прибор от батареи типа «Крона». Площадка в которую вставляется деталь зажимается рычажком, который обеспечивает надежный контакт. Я слегка доработал прибор. Во-первых зажим у меня начал изнашиваться — я уже проверил много выпаянных элементов. Требуются длинные выводы, а у выпаянных деталей выводы уже обрезаны, короткие.

Поэтому я купил несколько разноцветных маленьких зажимов типа «крокодил», припаял их на провода, а провода к контактам с обратной стороны зажима на приборе. Стало удобнее проверять детали, я так раскидал целую коробку выпаянных сопротивлений, диодов, конденсаторов по номиналам. Думаю даже подпаять туда пару щупов — как у обычного мультиметра. А зажим использовать стал иногда — для проверки новых купленных деталей.

Во — вторых пока я проверял детали батарейка подсела. Поэтому я решил и здесь ввести усовершенствования. Не выпаивая разъема для «Кроны» я на те же места подпаял блок питания от какого то приборчика напряжением 9 в и 0,5 А. Можно было приделать и штекер, я его не стал искать, припаял напрямую, а чтобы провода не болтались, использовал стяжки и термоклей:

В — третьих прибор выглядел после распаковки посылки очень хрупким. То ли экономят китайцы, то ли не заморачиваются особо на мелочах. Есть сейчас версии этого прибора в корпусе, но люди все равно дорабатывают.

И я поместил его на пластмассовый корпус на саморезы — благо в плате прибора оказались под них отверстия. Осталось еще придумать прозрачную крышку на дисплей, но пока не подобрал подходящую. В итоге у меня получился вот такой девайс. На видео продемонстрирую его возможности по проверке конденсаторов:

Как проверить не выпаивая

Для проверки без демонтажа применяются специальные тестеры. От обычных они отличаются пониженным напряжением на щупах, что сводит к минимуму риск повреждения прочих компонентов цепи.

Если такого прибора в наличии нет, можно превратить в него обычный мультиметр, подключив через приставку. Разнообразные схемы таких приставок опубликованы в Интернете и специализированных журналах.

Независимо от того, какой прибор применяется для измерения параметров конденсатора, вопрос о влиянии прочих элементов остается актуальным. Так, если параллельно с исследуемым, к цепи подключено еще несколько конденсаторов, тестер покажет их суммарную емкость.

Как работать с мультиметром

Как проверить конденсатор мультиметром

Промышленность выпускает несколько видов проверочного оборудования для измерения электрических параметров. Цифровые более удобны для измерений и дают точные показания. Стрелочные предпочитают за визуальное движение стрелки.

Если кондер с виду абсолютно цел, проверить его без приборов невозможно. Осуществлять проверку лучше с выпаиванием из схемы. Так показатели считываются точнее. Простые детали редко выходят из строя. Зачастую механически повреждаются диэлектрики. Основная характеристика при проверке — пропуск только переменного тока. Постоянный проходит исключительно в самом начале в течение короткого промежутка времени. Сопротивление детали зависит от существующей емкости.

Предпосылка проверки полярного электролитического конденсатора мультиметром на работоспособность — емкость более 0,25 мкФ.  Пошаговая инструкция проверки:

  1. Разряжают элемент. Для этого металлическим предметом закорачиваются его ножки. Замыкание характеризуется появлением искры и звука.
  2. Переключатель мультиметра ставится на значение сопротивления.
  3. Прикасаются щупами к ножкам конденсатора с учетом полярности. Красным к плюсовой ножке, черным тыкаем в минусовую. Это необходимо только при работе с полярным устройством.

Конденсатор начинает заряжаться при подключении щупов. Сопротивление растет до максимума. Если при щупов мультиметр запищит при нулевом значении, значит произошло короткое замыкание. Если сразу на циферблате высвечивается значение 1, то в элементе внутренний обрыв. Такие кондеры считаются неисправными — замыкание и обрыв внутри элемента неустранимы.

Если значение 1 появилось спустя некоторое время, элемент считается исправным.

Проверить неполярный конденсатор еще проще. На мультиметре выставляем измерение на мегаомы. После касания щупами смотрим на показания. Если они окажутся менее 2Мом — деталь неисправна. Более — исправна. Полярность соблюдать ни к чему.

Электролитический

Как следует из названия, электролитические кондеры в алюминиевом корпусе наполнены электролитом между обкладками. Габариты самые разные — от миллиметров до десятков дециметров. Технические характеристики могут превышать таковые у неполярных на 3 порядка и достигать больших величин — единиц mF.

В электролитических моделях появляется дополнительный дефект, связанный с ЭПС (эквивалентным последовательным сопротивлением). Этот показатель еще обозначают аббревиатурой ESR. Такие конденсаторы в схемах с высокими частотами отфильтровывают несущий сигнал от паразитных. Но возможно подавление ЭМП, сильно снижая уровень и играя роль резистора. Это ведет к перегреву конструкции детали.

Из чего складывается ESR:

  • сопротивление обкладок, выводов, узлов соединения;
  • неоднородность диэлектриков, влага, паразитные примеси;
  • сопротивление электролита за счет изменения химических параметров при нагреве, хранении, высыхании.

В сложных схемах показатель ЭПС особенно важен, но измеряется только специальными приборами. Некоторые мастера самостоятельно их изготавливают и используют в связке с обычными мультиметрами.

https://youtube.com/watch?v=XxRjcCHX33o

Керамический

Сначала осматриваем устройство визуально. Особенно внимательно, если в схеме использованы детали, бывшие в употреблении. Но и новые керамические материалы могут быть бракованными. Сразу заметны кондеры с пробоем — потемневшие, вздутые, прогоревшие, с растресканным корпусом. Такие электродетали однозначно выбраковываются даже без инструментальной проверки — ясно, что они неработоспособны или не выдают назначенных параметров. Лучше озаботиться поиском причин пробоев. Даже новые экземпляры с трещиной в корпусе являются «миной замедленного действия».

Пленочный

Пленочные устройства применяются в цепях постоянного тока, фильтрах, стандартных резонансных схемах. Основные неисправности устройств с малой мощностью:

  • снижение рабочих показателей в результате иссыхания;
  • увеличение параметров тока утечки;
  • повышение активных потерь внутри цепи;
  • замыкание на обкладках;
  • потеря контакта;
  • обрыв проводника.

Измерить емкость конденсатора возможно в режиме тестирования. Стрелочные модели реагируют отклонением стрелки со скачком и возвратом к нулю. При небольшом отклонении стрелки диагностируют утечку тока при малой емкости.

Малая эффективность с низким уровнем мощности при большом токе утечки мешает широкому применению данных конденсаторов и не позволяет его потенциалу полностью раскрыться. Поэтому использование этого вида кондеров нецелесообразно.

Проверка конденсатора мультиметром в режиме омметра

Возникновение основных проблем с аппаратурой электронного типа предполагает решение вопроса, связанного с тестированием работоспособности конденсаторного устройства.

Простой визуальный осмотр такого элемента не позволяет получить максимально точные результаты, поэтому актуальной является проверка работы конденсатора при помощи мультиметра.

Проверка конденсатора – подключение к мультиметру

Наиболее доступным и удобным способом тестирования неисправного конденсаторного устройства является использование мультиметра с выставленным режимом омметра.

Как проверить неполярный конденсатор мультиметром

Стандартные устройство неполярного типа выглядит аналогично обычному электролитическому конденсаторному элементу, но для такого вида прибора полярность напряжения не является важной. Такие конденсаторные элементы устанавливаются в схемах, имеющих переменный или пульсирующий ток. Отличить неполярное устройство можно при визуальном осмотре: на корпусе отсутствием маркировка полярности

Отличить неполярное устройство можно при визуальном осмотре: на корпусе отсутствием маркировка полярности.

Неисправные конденсаторы

Технология проведения тестирования конденсатора неполярного типа в режиме омметра следующая:

  • переключение мультиметра в режим замера показателей сопротивления;
  • установка максимальных пределов из возможно допустимых показателей;
  • подключение измерительных щупов на выводы тестируемого конденсаторного устройства;
  • замер при помощи прибора уровня сопротивления утечки.

Работоспособные кондиционеры не показывают никаких значений, поэтому на дисплее высвечивается единица, свидетельствующая о сопротивлении утечки выше 2.0 мегаом. Фиксация измерительным прибором сопротивления ниже 2.0 мегаом свидетельствует о большой утечке.

Важно помнить, что держать двумя руками конденсаторные выводов и металлические щупы измерительного прибора категорически запрещается, так как в этом случае будут получены некорректные данные тестирования.

Проверка полярного конденсатора

К категории конденсаторных устройств полярного типа относятся электролитические элементы, которые по сравнению с неполярными приборами, подвержены достаточно быстрому процессу старения. При подаче избыточного напряжения устройство может взрываться. Чтобы избежать подобной проблемы, в процессе изготовления на крышку корпуса наносится несколько специальных насечек.

Тестирование полярных конденсаторных элементов электролитического типа посредством омметра имеет несколько важных отличий. Показатели стандартного сопротивления утечки конденсаторного устройства полярного типа, как правило, составляют 100 килoOм или более, поэтому перед выполнением проверки, элемент требуется разрядить, замыкая выводы накоротко. В противном случае значительно возрастает риск поломки измерительного прибора.

Проверка полярного конденсатора

Технология проведения тестирования конденсатора полярного типа в режиме омметра следующая:

  • переключение мультиметра в режим замера показателей сопротивления;
  • установка предела измерения уровня сопротивления на показатели 200К (200000 Ом);
  • фиксация щупов на выводы с соблюдением полярности;
  • измерение прибором уровня сопротивления утечки.

Вне зависимости от модельных особенностей, все разновидности современных конденсаторов электролитического типа обладают достаточно большой емкостью, поэтому в процессе выполнения проверки происходит стандартная подзарядка устройства.

Продолжительность такого процесса составляет всего несколько секунд. При этом отмечается рост изначального уровня сопротивления, который сопровождается увеличением цифровых показателей на дисплее.

Исправность проверяемых устройств оценивается по значениям замеряемого мультиметром сопротивления. Если показатели равны 100 килоОм или более, то конденсатор полярного типа исправен и не потребует замены.

Разновидности конденсаторов и способы их проверки

Если вы решили разобраться в том, как мультиметром проверить конденсатор, то необходимо выяснить какие разновидности этих устройств на сегодняшний день известны. Они могут быть как полярными, так и неполярными. Основным и очевидным их отличием является наличие полярности у полярных конденсаторов.

Модели полярного типа относятся к электролитическим. Если устройства были изготовлены еще в советский период, то в случае их взрыва может произойти попадание электролита на поверхность кожи. Современные же изделия оснащены специальным сечением на поверхности, которое в случае разрыва направляет взрывную струю по определенному направлению, исключая разбрызгивание проводящего вещества в различные стороны.

Прежде всего способ проверки зависит от того, какой характер имеет неисправность. Прозвонить конденсаторы мультиметром можно посредством:

  • измерения сопротивлений в его диэлектрике;
  • замера его емкости.

Что такое емкость?

Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.

Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С — это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют — заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.

Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.

Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.

Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Коммуникации
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector